95.4

Koszul complex and Them isomorphism
ン
Let $\pi: V \rightarrow X$ be a G-equiv. vector bundle. Let ...: be the zero-section.
Goal Provide a canonical resolution of $i_{*} \theta_{x}$ by G-equiv. loally free sheaves.
net
Put $\lambda(V):=\sum_{i=0}^{r^{k} V}(-1)^{i}\left[\Lambda^{i} V\right] \in K^{G}(X)$.
The Koszul complex is

$$
\xrightarrow[\ldots \rightarrow \Omega_{V / x}^{2} \rightarrow \Omega_{v / x}^{1} \rightarrow \Omega_{v / x}^{0} \rightarrow i_{*} \theta_{x} \text { complex }]{\ldots}
$$

Let $\psi: V^{v} \rightarrow X$ be the dual vector bundle. Then

$$
\Omega_{v / x}^{j} \simeq \pi^{*}\left(\Lambda^{j} v^{v}\right)
$$

So the Koszul complex can be rewritten as

$$
\begin{aligned}
& \text { Koszul complex can be rewritten as } \\
& \cdots \rightarrow \pi^{*}\left(\Lambda^{2} V^{v}\right) \rightarrow \pi^{*}\left(\Lambda^{\prime} V^{v}\right) \rightarrow \theta_{V} \rightarrow i_{*} \theta_{x} \text {. }
\end{aligned}
$$

Prop the Koszul complex is exact-
Therefore, $\left[i_{*} \theta_{x}\right]=\pi^{*}\left(\lambda\left(v^{v}\right)\right) \in K^{G}(x)$.
Now we can use the Koszul resolution to define $i^{*}: K^{G}(V) \rightarrow K^{G}(X)$, by $[F] \mapsto \sum(-1)^{i} H^{i}(F \otimes$ Koszal $)$. Recall: $i^{*}[F]=\begin{gathered}\text { alternating sum of } \\ \text { co homologies of }\end{gathered}$ chomologies of homologies
$F \otimes($ resolution of
$\left.i * \theta_{x}\right)$
Lemma
$i^{*} \pi^{*}: K^{G}(x) \longrightarrow K^{G}(x) \quad$ is identity.

$$
i^{*} i_{*}: K^{G}(x) \rightarrow k^{G}(x) \quad \text { is } \quad \lambda\left(v^{v}\right) \otimes \text {. }
$$

Prof
Let i: $N \hookrightarrow M$ be a G-equiv closed embedding of a smooth G-variety N into a smooth G-variety M. Then $i^{*} i_{*}: K^{G}(N) \rightarrow K^{G}(N)$ is $\lambda\left(T_{N}^{*} M\right) \otimes-$.

Cor
If $\quad 0 \rightarrow V_{1} \rightarrow V \rightarrow V_{2} \rightarrow 0$ is a SES of G-equiv vector bundles, then $\lambda(v)=\lambda\left(V_{1}\right) \otimes \lambda\left(V_{2}\right)$.

The (Thou isomorphism)
Suppose $\pi: E \rightarrow X$ is an affine bundle.
Then $\quad \pi^{*}: K_{j}^{G}(x) \simeq K_{j}^{G}(E) \quad \forall j \geq 0$.

Cor
Let $\pi: V \rightarrow X$ have zero-section $i: X \rightarrow V$.
Then i^{*} is the inverse to π^{*}, the Thou isomorphism.

2 Convolution and Thom isomorphism
The goal is to understand the compatibility between convolution and Thom isomorphism.
Setup

$$
\begin{aligned}
& M_{1}, M_{2} \text { - smooth proj. G-varieties } \\
& M_{3}=p t \\
& Z_{12}=M_{1} \times M_{2} \\
& Z_{23}=M_{2} \times p t \\
& Z_{13}:=Z_{12} \cdot Z_{23}=M_{1} \times p t
\end{aligned}
$$

Convolution gives: $K^{G}\left(M_{1} \times M_{2}\right) \underset{R(G)}{\otimes} K^{G}\left(M_{2}\right) \rightarrow K^{G}\left(M_{1}\right)$, ie.,

$$
\left.P_{M}: K^{G}\left(M_{1} \times M_{2}\right) \longrightarrow M_{R G G}\left(K^{G} M_{2}\right), K^{G}\left(M_{1}\right)\right) \text {. }
$$

Pr: $E_{r} \rightarrow M_{r} \quad G$-equiv. vector band les

$$
\begin{aligned}
& \text { ir: } M_{r} \longrightarrow E_{r} \quad \text { zero-sections } \\
& \bar{p}:=i_{E_{1}} \times P_{2}: E_{1} \times E_{2} \rightarrow E_{1} \times M_{2} \\
& \bar{i}:=i_{1} \times i d_{M_{2}}: E_{1} \times M_{2} \hookrightarrow E_{1} \times E_{2}
\end{aligned}
$$

ICE $E_{1} \times E_{2}$ - closed G-stable subvariety
Assume $\left.\overline{\mathrm{P}}\right|_{2}$ is proper.
Then $Z \cdot E_{2} \backsim E_{1}$ is well-defined.

But the blue can be identified by whom. How are $K^{G}(2), K^{G}\left(M_{1} \times M_{2}\right)$
Lamer The following diagrams (in K-theory and BM-homology) commute.

Lemmas
Take $M_{1}=M_{2}, E_{1}=E_{2}$.
Assume $2.2<2$. Then the following diagram commutes.

$$
\begin{aligned}
& K^{G}(z) \longrightarrow \operatorname{End}_{R(G)}\left(K^{G}(E)\right) \\
& \downarrow \\
& K^{G}(M \times M) \longrightarrow \text { Tom }^{G} \longrightarrow \operatorname{End}_{R(G)}\left(K^{G}(M)\right)
\end{aligned}
$$

