§5.1
Dur goal is to understand G-equivariant sheaves.
Setup
G - linear algebraic group (i.e., closed subgroup scheme of Gln)

$$\chi - G$$
-variety, i.e. variety equipped with G-action
 $G \times \chi \xrightarrow{a} \chi$ comes with two maps: a: action map (χ as a
 $G \times \chi \xrightarrow{a} \chi$ comes with two maps: a: action map (χ as a
 $G \times \chi \xrightarrow{a} \chi$ comes with two maps: projection map
Motivation
Comes from G-invariant functions.
A G-invariant functions $f(g,\chi) = f(\chi) = \chi \in \chi, g \in G$.
Another way to rewrite this: att and pt are functions on $G \times \chi$,
 $a^{*}f(g,\chi) = f(g,\chi)$ and $p^{*}f(g,\chi) = f(\chi)$.
So f is G-invariant \iff $a^{*}f = p^{*}f$.
There are also compatibility maps $G \times G \times \chi$ indices $G \times \chi$.
Coming from $f(g_{1}(g,\chi)) = f(\chi) = f(G_{1}g_{1})\chi$, surging that
 $(m \times id)^{*}p^{*}f = (id \times a)^{*}a^{*}f$.

Shear putter
We work with
$$O_X$$
-modules, so for a map $f: X \rightarrow Y$,
and an O_Y -module F , define
 $f^* F := O_X \overset{o}{}_{f^- O_Y} f^- F$.

Det Let X be a G-variety, F an
$$\theta_X$$
-module.
F is G-equivariant if
i) there is a given isomorphism I: $a*F rightarrow p*F$,
2) the ways $G \times G \times X \to X$ are related by
 $p_{2}^* I \circ (id_{0} \times a)^* I = (m \times id_{X})^* I$.
Removel
i) A similar definition works for arbitrary sheaves instead of θ_X -mad
2) It's meaningless to use if a sheaf is G-equivariant.
To be G-equivariant is to equip a sheaf with additional structure
EX For a G-variety X, then θ_X is a G-equiv. sheat by
 $a^*\theta_X \simeq \theta_{0}^* \times = p^*\theta_X$.
EX Let F be a locally free sheat on a G-variety X,
with total space $\pi: F \to X$.
Then: giving F a G-equiv. structure is equivalent to
giving a G-action $\Phi: G \times F \to F$ on the
total space, such that:
i) The commutes with G-action
(in particular, $g: F_X \to F_{3X}$ on filen)
2) on filters. $F(g, -)$ is a linear map of
vestor Spaces.

2 Equivariant line bundles
Dur main goal is to prove:
Now there
$$G_{-}$$
 linear als group
 X_{-} normal $G_{-variety}$
 Z_{-} line bundle on X
Then $\exists ne \mathbb{Z}_{>0}$ such that $I^{\otimes n}$ admits a (possibly not unique)
 G_{-} quivariant structure.
We'll prove this through a series of leannas. For convenience,
We'll prove this through a series of leannas. For convenience,
 Ve'' prove this through a series of $I^{\circ} (C^{\circ}) = A^{\circ} \times G_{n}^{\circ}$.
 $I^{\circ} = variety X$ is "fairly affine" if it contains a
 $Z_{avirki-open}$ dense subset of the form $C^{\circ} \times (C^{\circ}) = A^{\circ} \times G_{n}^{\circ}$.
Lemmer Let X be a normal variety.
1) If X is smooth then $Pic(X) \simeq Cl(X) := Div(X)/pDv(X)$.
2) For any X, the projection map $Pi (C^{\circ} \times (C^{\circ}) \times X \to X)$ induces
 $a = isomorphism vin pullback $P^{*} \cdot Cl(X) \longrightarrow Cl(C^{\circ} \times (C^{\circ} \times X))$.
3) Suy UCX is open and ξ_{Gi} are the irred. comps of XNU
There we have an exact sequence
 $Z_{i}^{\circ} Ci_{i}^{\circ} \longrightarrow Cl(X) \longrightarrow Cl(U) \rightarrow O$.
Lemmer
Let M, X be smooth varieties with M "fairly affine"
and projection K . (To be explicit, $Z \simeq (Pi^{\circ} X)_{max} \otimes (pi^{\circ} I_{max})$.
Note: this still works for MX normal and uncM very i_{i} pit of line
hundles on M/X. (To be explicit, $Z \simeq (Pi^{\circ} X)_{max} \otimes (pi^{\circ} I_{max})$.
Point is set $U = C^{\circ}(C^{\circ} C M \Rightarrow M \vee M \otimes (max) = Cl(U \times X) = Cl(X) \to O$.
Here, $Z^{\circ} = Z_{i}^{\circ} I_{i} Ci^{\circ} M > M \vee M \otimes (max) = Cl(U \times X) = Cl(X) \to O$.$

Lemma Let G be a linear alg. group. The G is "fairly affine."
Port
1) The unipotent radiual
$$G_{u} \subseteq G$$
 is $\cong A^{t}$, so it suffices to
prove for $G=G/G_{u}$, a reductive group.
2) Pick apposite Borels $B^{t}, B^{-} \subseteq G'$, with $T=B^{+}(B^{-}, a)$
wradinal torus.
3) B^{+}, B^{-} is dense open, b/c B^{+} to $I \subseteq G/B^{-}$ is the unique
dense open cell/orbit.
4) $B^{+}, B^{-} \simeq U^{-} \times T \times U^{+} \simeq C^{r}_{\times}(C^{*})^{s}$. In the fling variety.
50 now we can apply the lemmon to $G \times X$.
Lemma
 $Pic(G)$ is torsion.
Prot i) G has finitely many connected comps. so by induction
accume G is connected.
2) As varieties, $G \cong G_{u} \times (G/G_{u})$, so $CI(G) \cong CI(G/G_{u})$.
 A^{+}_{i} inductive
 A low everything is sumeth so $CI \cong Pic$. So assume G is reductive.
 A low everything is sumeth so $CI \cong Pic$. So assume G is reductive.
 $f_{i} \in C(G)$, shown by BGG . So $\frac{1}{B^{+}_{i}g_{i}}$.
Such cell has class $O \subseteq CI(G) \cong CI(G) = O$.
 $f_{i} \in CI(G)$, shown by BGG . So $\frac{1}{B^{+}_{i}g_{i}}$.
Such cell has class $O \subseteq CI(G) \cong CI(G) = O$.
 $F_{i} \in IG$, shown by BGG . So $\frac{1}{B^{+}_{i}g_{i}} \equiv T$
 T agreend, this invite our $G \cong G^{+}_{i}$. Then $a^{*} I \cong (P_{i}^{*}F)$.
 $F_{i} = I has burdle on G to is torsion, so $F^{-}_{i} = G \cong I^{*}_{i} = O$.
 $F_{i} = I has burdle on G to is torsion, so $F^{-}_{i} = G \cong I^{*}_{i} = O$.
 $F_{i} = I has burdle on G to is torsion, so $F^{-}_{i} = G \cong I^{*}_{i} = P_{i} T = I^{*}_{i} =$$$$

$$\begin{array}{l} \Pr_{e^{0}} \stackrel{f}{=} \\ 1) \\ \pi: \forall \otimes \mathcal{I}' \Big|_{X}^{\otimes n} \longrightarrow F. \\ 2) \qquad & & & \forall \otimes \mathcal{I}' \Big|_{X}^{\otimes m} \stackrel{f}{\longrightarrow} \forall e^{\tau} (\pi). \\ 3) \qquad & & F = coker \left(\forall \otimes \mathcal{I}' \Big|_{X}^{\otimes m} \stackrel{f}{\longrightarrow} \forall \circ \mathcal{I}' \Big|_{X}^{\otimes n} \right) \\ e^{0} \qquad & & f \leftarrow \rightarrow Section \qquad & se \ Hom (W, V) \otimes \mathcal{I}^{\otimes (m^{-n})}. \\ \hline e^{0} \qquad & f \leftarrow \rightarrow Section \qquad & se \ Hom (W, V) \otimes \mathcal{I}^{\otimes (m^{-n})}. \\ \hline e^{0} \qquad & f \leftarrow \rightarrow Section \qquad & se \ Hom (W, V) \otimes \mathcal{I}^{\otimes (m^{-n})}. \\ \hline e^{0} \qquad & f \leftarrow \rightarrow Section \qquad & se \ Hom (W, V) \otimes \mathcal{I}^{\otimes (m^{-n})}. \\ \hline e^{0} \qquad & f \leftarrow \rightarrow Section \qquad & f \leftarrow Hom (W, V) \otimes \mathcal{I}^{\otimes (m^{-n})}. \\ \hline e^{0} \qquad & f \leftarrow \rightarrow Section \qquad & f \leftarrow Hom (W, V) \otimes \mathcal{I}^{\otimes (m^{-n})}. \\ \hline e^{0} \qquad & f \leftarrow \rightarrow Section \qquad & f \leftarrow Hom (W, V) \otimes \mathcal{I}^{\otimes (m^{-n})}. \\ \hline e^{0} \qquad & f \leftarrow \rightarrow Section \qquad & f \leftarrow Hom (W, V) \otimes \mathcal{I}^{\otimes (m^{-n})}. \\ \hline e^{0} \qquad & f \leftarrow \rightarrow Section \qquad & f \leftarrow Hom (W, V) \otimes \mathcal{I}^{\otimes (m^{-n})}. \\ \hline e^{0} \qquad & f \leftarrow \rightarrow Section \qquad & f \leftarrow Hom (W, V) \otimes \mathcal{I}^{\otimes (m^{-n})}. \\ \hline e^{0} \qquad & f \leftarrow \rightarrow Section \qquad & f \leftarrow Hom (W, V) \otimes \mathcal{I}^{\otimes (m^{-n})}. \\ \hline e^{0} \qquad & f \leftarrow \rightarrow Section \qquad & f \leftarrow Hom (W, V) \otimes \mathcal{I}^{\otimes (m^{-n})}. \\ \hline e^{0} \qquad & f \leftarrow \to Section \qquad & f \leftarrow Hom (W, V) \otimes \mathcal{I}^{\otimes (m^{-n})}. \\ \hline e^{0} \qquad & f \leftarrow \to Section \qquad & f \leftarrow Hom (W, V) \otimes \mathcal{I}^{\otimes (m^{-n})}. \\ \hline e^{0} \qquad & f \leftarrow \to Section \qquad & f \leftarrow Hom (W, V) \otimes \mathcal{I}^{\otimes (m^{-n})}. \\ \hline e^{0} \qquad & f \leftarrow \to Section \qquad & f \leftarrow Hom (W, V) \otimes \mathcal{I}^{\otimes (m^{-n})}. \\ \hline e^{0} \qquad & f \leftarrow \to Section \qquad & f \leftarrow Hom (W, V) \otimes \mathcal{I}^{\otimes (m^{-n})}. \\ \hline e^{0} \qquad & f \leftarrow \to Section \qquad & f \leftarrow Hom (W, V) \otimes \mathcal{I}^{\otimes (m^{-n})}. \\ \hline e^{0} \qquad & f \leftarrow \to Section \qquad & f \leftarrow Hom (W, V) \otimes \mathcal{I}^{\otimes (m^{-n})}. \\ \hline e^{0} \qquad & f \leftarrow \to Section \qquad & f \leftarrow \to Section$$