§4.4 Stabilization
This will be a shorter summary, skipping many technical details.
Our goal is to understand the behavior of the constructions in $\oint 4.2$ as $d \rightarrow \infty$.
Setup
Fix $r \in\{0,1, \ldots, n-1\}$. Our $d \in Z_{>0}$ will always be $d=r+k \cdot n$, so any two d 's
Reel constructions in $\oint 4.2$: we have $N_{d}, M_{d}, Z_{d}, F_{d}$.
Fix $e:=\left(\begin{array}{ccc}0 & 1 & \\ 0 & 1 & 1 \\ 0 & 1 \\ 0 & 0\end{array}\right) \in g l_{n}$ to be the nilpotent Jordan block of size n.
Define the embedding $i: g \ell_{d} \hookrightarrow g \ell_{d+n}, x \longmapsto x \oplus e=\left(\frac{x}{\mid e}\right)$.

Goal: Construct $\mathbb{N}_{\infty}, M_{\infty}, Z_{\infty}$, etc.

2 Constructing N_{∞}
Fix the remainder $r \in\{0,1, \ldots, n-1\}$.
Then define $\mathbb{C}^{r+\infty}:=\mathbb{C}^{r} \times \prod_{j \geq 0} \mathbb{C}^{n}$.
Let $\Gamma^{k}:=\prod_{j \geq k} \mathbb{C}^{n}$. Then we have SES

$$
0 \rightarrow \Gamma^{k} \rightarrow \mathbb{C}^{r+\infty} \rightarrow \mathbb{C}^{r+k \cdot n} \rightarrow 0
$$

Then we construct

$$
\begin{aligned}
& \text { construct } \\
& G L_{r+\infty}:=\left\{g \in G L\left(\mathbb{C}^{r+\infty}\right)|g|_{\Gamma^{k}}=I d \text { for } k \gg 0\right\} \text {. }
\end{aligned}
$$

Note that $G L_{r+k \cdot n} \subset G L_{r+\infty}$ via $\left\{\left.g \in G L\left(\mathbb{C}^{r+\infty}\right)\right|_{\left.g\right|_{\Gamma k}}=I d\right\}$,

$$
\text { and } G L_{r+\infty}=\lim _{k} G l_{r+k \cdot n}
$$

So all elements should be "eventually Id".
So set $e_{\Gamma^{k}}:=\prod_{j \geq k} e$.
Similarly,

$$
N_{r+\infty}:=\left\{x \in \operatorname{End}\left(C^{r+\infty}\right)\left|x^{n}=0, x\right|_{\Gamma^{k}}=e_{\Gamma^{k}} \text { for } k \gg 0\right\} \text {. }
$$

Note: $N_{r+\infty}$ is not a cone variety!
Similarly, $N_{r+\infty}$ can be realized as a direct limit:
we have $N_{r} \stackrel{i}{\hookrightarrow} N_{r+n} \xrightarrow{i} N_{r+2 r} \stackrel{i}{\longrightarrow} \ldots$

$$
\Rightarrow N_{r+\infty}=\underset{k}{\lim } N_{r+k \cdot n}
$$

Similar to the finite-dim case, $G l_{r+\infty} \curvearrowright \mathbb{N}_{r+\infty}$ by conjugation.
Remark
The $G L_{r+\infty \text {-orbits are naturally in bijection with things called }}^{\text {"Dirac cen }}$ "Dirac sens."

3 Dependence on d
Fix $\quad=\left(0 \leq \mathbb{C} \subseteq \mathbb{C}^{2} \subseteq \mathbb{C}^{3} \subseteq \cdots \subseteq \mathbb{C}^{n}\right)$ the standard full flag in \mathbb{C}^{n}, the unique full flag fixed by $e \in g l_{\text {n }}$.

1) We have a system

$$
F_{d} \stackrel{i}{\longrightarrow} F_{d+n} \xrightarrow{i} F_{d+2 n} \xrightarrow{i} \cdots
$$

where $\quad(F)=F \oplus \mathcal{O}:=\left(0 \oplus 0 \subseteq F_{1} \oplus \mathbb{C} \subseteq F_{2} \oplus \mathbb{C}^{2} \subseteq \ldots \subseteq \mathbb{C}^{d} \oplus \mathbb{C}^{(C)}\right.$
2) We have maps $\mu: M_{d} \rightarrow N_{d}, \quad(x, F) \mapsto x$.

These fit into a commutative dingram/syctem

3) Lemma
$\forall x \in N_{d}$, we have $i\left(F_{x}\right)=F_{i(x)}$.
Cor

$$
i^{*}: H\left(F_{i(x)}\right) \xrightarrow{\sim} H\left(F_{x}\right)
$$

4) Since $Z_{\alpha}:=M_{d} \times N_{d} M_{d}$, we have maps $Z_{d} \stackrel{i}{\longrightarrow} Z_{d+n} \stackrel{i}{\longrightarrow} Z_{d+2 n} \stackrel{i}{\longrightarrow} \ldots$

We have the comm. diagram:

This induces restriction with support map:

$$
\begin{aligned}
i^{*}: H^{B M}\left(Z_{d+n}\right) & \longrightarrow H_{0}^{B M}\left(Z_{d}\right) \\
c & \longrightarrow C \cap\left[M_{\alpha} \times M_{d}\right] .
\end{aligned}
$$

Furthermore, it restricts to a map

$$
i^{*}: H\left(Z_{d+n}\right) \rightarrow H\left(Z_{d}\right)
$$

Main the 1

1) $i^{*}: H\left(Z_{d+n}\right) \rightarrow H\left(Z_{d}\right)$ is a ham. of algebras wot convolution.
2) The $H\left(Z_{d}\right) \otimes H\left(F_{x}\right) \rightarrow H\left(F_{x}\right)$ fit into the system:

$$
\begin{aligned}
& \ldots \rightarrow H\left(Z_{d+2 n}\right) \otimes H\left(F_{i\left(z_{0}\right)} \xrightarrow{i_{0}^{*} \otimes i^{*}} H\left(Z_{d+n}\right) \otimes H\left(F_{i(x)}\right) \xrightarrow{i_{i * i *}^{*}} H\left(Z_{d}\right) \otimes H\left(F_{x}\right)\right. \\
& \downarrow \quad \downarrow \quad i^{*} \downarrow \\
& \rightarrow H\left(F_{i P(x)}\right) \xrightarrow{i^{*}} H\left(F_{i}(x)\right) \xrightarrow{i^{*}} H\left(F_{x}\right)
\end{aligned}
$$

5 Profinite completion
$U(s h)$ is an infinite-dimensional algebra. Well now take the profinite completion:

$$
\hat{U}:=\lim _{\longleftrightarrow} U(5 \ln) / I
$$

the inverse limit over all finite-dim quotients, equivalently, over all (two-sided) ideals I of finite codimension. Since $Z\left(S L_{n}\right)=\mu_{n}$, the roots of unity, we have a weight spore decomp for any fid. Sh -module M :

$$
M=\underset{x \in\left(\mu_{n}\right)^{v}}{ } M_{x}
$$

where $\left(\mu_{n}\right)^{v}$ is the Cartier dual $\left(=\right.$ Pontryagin dual) of μ_{n}; this is $\mathbb{Z} / n \mathbb{Z}$, and M_{x} is the subspace for which $Z\left(S L_{n}\right)$ acts by X.
In particular, $U(s \ln) / I=\underset{r \in \mathbb{l} / n \pi}{\bigoplus}(U(s \ln) / I)_{r}$.
Therefore $\quad \hat{U}=\lim _{\leftarrow} U(s \ln) / I=\underset{r \in Z \ln \pi}{\bigoplus} \lim _{\leftarrow}(U(s \ln) / I)_{r}=\underset{r \in \mathbb{U} \ln \mathbb{E}}{\bigoplus} \hat{U}_{r}$.
$\hat{U}_{r} \subset \hat{U}$ is the subalgebra charweterized by the property that: for any (rational) simple $S L_{n}$-module with central charneter X_{d}, if $d \equiv r(\bmod n)$ then \hat{U}_{r} acts nontrivally: if $d \neq r(\bmod n)$ then \hat{U}_{r} acts trivially.

The maps $\phi_{d}: U(s \ln) \rightarrow H\left(Z_{\alpha}\right)$ with kernel

$$
I_{d}:=\operatorname{Ann}\left(\left(\mathbb{C}^{n}\right)^{\otimes d}\right)
$$

are compatible with i^{*} :

This gives us a map $U(s \ln) \rightarrow \lim _{\leftarrow_{k}} H\left(Z_{r+k \cdot n}\right)$.
Mainthm 2
For each $r \in\{0,1, \ldots, n-1\}$, we have an iso of complete topological algebras $\hat{U}_{r} \simeq \underset{k}{\lim } H\left(Z_{r+k \cdot n}\right)$.

This realizes the natural map $U(s \ln) \rightarrow \lim _{t_{k}} H\left(Z_{r+k n}\right)$ as $U(s \ln) \hookrightarrow \hat{U} \rightarrow \hat{U}_{r} \cong \lim _{\nless k} H\left(z_{r+k \cdot n}\right)^{k}$.

Proof

$$
\begin{aligned}
& \text { of } \text { Recall that } H\left(Z_{d}\right)=U(s \ln) / I_{d}, I_{d}=A n n\left(\left(\mathbb{C}^{n}\right)^{\otimes d}\right) \text {. } \\
& \text { But the center rets on } \mathbb{C}^{n} \text { by } X_{1} \text {, hence nets on }
\end{aligned}
$$

But the center nets on \mathbb{C}^{n} by X_{1}, hence nets on $\left(C^{n}\right)^{\otimes d}$ by $X_{d}=X_{r}$ sine ${ }^{d=r+k \cdot n \text {. So }}$

$$
\lim H\left(Z_{r}+k \cdot n\right) \longleftrightarrow \hat{U}_{r} \text {. }
$$

But every irreg with central character X_{r} appears in $\left(\mathbb{C}^{n}\right)^{\otimes r+k \cdot n}$ for $k \gg 0$, so actually $\underset{\longleftrightarrow}{\lim H\left(Z_{r+k \cdot n}\right)} \xrightarrow{\sim} \hat{U}_{r}$.

6 Infinite-dimensional interpretation
In the fid setting,

$$
M_{d} \ni(x, F)
$$

$$
M_{d}=T^{*} F_{d}
$$

$$
\begin{array}{ccc}
\mu \downarrow & & \downarrow \\
N_{d} & & \\
\hline
\end{array}
$$

And $Z_{d} \circ F_{x}=F_{x} \Rightarrow H\left(Z_{d}\right) \curvearrowright H\left(F_{x}\right)$.
Ir the ∞-dim setting:

- we constructed $N_{r+\infty}$
- Define
- Define

$$
\begin{aligned}
& M_{r+\infty}=\left\{(x, F) \in N_{r+\infty} \times F_{r+\infty} \mid \times\left(F_{i}\right) \subseteq F_{i-1} \forall i\right\} \\
&=\xrightarrow{\lim } M_{r+k \cdot n} \text { under map } \\
& M_{r} \stackrel{i}{\rightarrow} M_{r+n}, M_{r+2 r} \stackrel{i}{\rightarrow} \ldots
\end{aligned}
$$

This plays the vole of the cotangent bundle to $F_{r+\infty}$ (although therels no zero section).

- We again have a map $\mu: M_{r+\infty} \rightarrow N_{r+\infty}$, $(x, F) \mapsto x$
the fibers are finite-dimensonal projective varieties
- Define $Z_{r+\infty}:=M_{r+\infty}{ }^{\times} N_{r+\infty} M_{r+\infty}=\xrightarrow{\lim } Z_{r+k \cdot n}$ (under ; maps).
- Then $\hat{U}_{r}=\lim _{\epsilon_{k}} H\left(Z_{r+k n}\right)^{\prime \prime}=H\left(Z_{r+\infty}\right)^{\prime \prime} \frac{\text { can be viewed as the a ge bra }}{\text { of infinite sums of irred. comps of } Z_{r o o} \text {. }}$

