83.7

$$
1
$$

$M_{\text {ain }}$ the (Jacobson-Morozov)
Let g be semisimple Lie alg $k \in t_{j}$ ithlar 0 . For all nilpotent $e \in g$, there exists $h, f \in g$ sit. (e,f,h) form an $5 l_{2}$-triple:

1) $[h, e]=2 e,[h, f]=-2 f,[e, f]=h$
2) \exists Lie alg ham $r: g l_{2}(\mathbb{C}) \rightarrow g$ sending
3) $h \in g^{s s}$ and $f \in \mathbb{N}$.

Proof
postponed to end of $\$ 3.7$.
Def
We say (e, f, h) is an $s l_{2}$-triple.
Rok Note that this triple is not unique!!
In fact, non-uniqueness is measured by:

Gr
Given $e \in N \subset g$.
\exists map $\quad \gamma: S L_{2}(C) \rightarrow G$ s.t. $d \gamma:\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right) \mapsto c$.

Cor
Since $s l_{2}$ th $\leftrightarrow\left(t_{t^{\prime \prime}}\right) \in S l_{2}(6)$, we get a how. $\gamma: \mathbb{C}^{x} \rightarrow G$ st $\gamma(t) e \gamma(t)^{\prime}=t^{2} \cdot e$.

Prop
Fix $e \in \mathcal{N} \subset g$.
Then $\gamma: g l_{2} \rightarrow 9$ sending $e \mapsto e$ is determined uniquely up to conjugation by the unipotent radical of $Z_{G}(e)$, i.e., the $u \subset Z_{g}(e)$ where $u=\mathrm{im}(e) \cap \operatorname{ker}(e)$.

Prove $\mathrm{Zg}^{\prime \prime}(\mathrm{e})$
Again postponed to and of \$3.7. D
Ex
Let $\quad g=s \ln (\mathbb{C})$. Then any $e \in \mathbb{N}$ is $n=\left(\begin{array}{cccc}{[-1} & 0 & & \\ 0 & m-3 & 0 & \\ & & \ddots & \\ 0 & \ldots & 0 & -m+1\end{array}\right), \quad e=\left(\begin{array}{cccc}0 & 1 & & \\ 0 & 1 & 0 \\ & \ddots & \ddots & \\ & & 0 & 1 \\ & & & 0\end{array}\right)$, Jordan blocks, so it suffices to deal with a single Jordan black. But we can write down h and f explicitly:

2
Recall that every f.d. $s l_{2}$-rep is a direct sum of irreps, and every fid. irrep looks like:

Therefore, every fid. rep looks like:

rows are the (1)-decomp into irreps.
e : increases weight by 2
f : decreases weight by 2

This diagram is symmetric a bout $h=0$.
Cor
Assume V is a f.d. $5 l_{2}$-rep.
If ${ }_{v e} V$ with $f \cdot v=0$ and $h \cdot v=-m \cdot v$, then $m \in \mathbb{Z} \geq 0$ and $e^{m+1} \cdot v=0$.

Cor
If $e \in g$ is nilpotent, then it arts nilpotently on any fid. g-module.
Proof Use the fact that e car be extended to an $5 l_{2}$-triple. ロ

3

1) Fix $e \in \mathcal{N} \subset g$.
2) Choose an $5 l_{2}$-triple (e, f, h), so that $5 l_{2} \hookrightarrow g$, and g is an $5 l_{2}$-module
3) ad h acts on g by \mathbb{Z}-weights. This induces a grading

$$
g=\bigoplus_{n \in \mathbb{Z}} g_{n}, \quad g_{n}:=\{x \in \mathbb{Q}, \operatorname{ad} h(x)=n \cdot x\} .
$$

Note that $L_{\text {ie }} Z_{G}(e)=Z_{g}(e)=\operatorname{ker}(\operatorname{ad} e)$.
Cor

1) All eig's of ad h on $Z_{g}(e)$ are in $\mathbb{Z}_{\geq 0}$.
2) If all cig's of ad h are even, then $\operatorname{dim} Z_{g}(e)=\operatorname{dim} Z_{g}(h)$.

Proof
Use the picture.

1) $\mathrm{Zg}(\mathrm{e})$ is all of the highest weight spaces in each row. By symmetry, all weights are ≥ 0.
2) The rows are in bijection with irreps in the direct sum decomp. sine even weights \Rightarrow each irree has \Rightarrow eave irreg has exactly one
0 - weight space $\operatorname{dim} Z_{G}(h)=\operatorname{dim} g_{0}=\#$ irreps, and $\operatorname{dim} Z_{g}(e)=\#$ irreps.

Part (2) of this Corollary gives us an easy proof of:
The Choose a decomp $g=\Pi_{-} \oplus h \boxplus \Pi_{+}$. let $\left\{e_{i}\right\} \subset \Pi_{+}$be root vectors for simple roots. Then $\sum e_{i}$ is regular nilpotent.

Proof
Set $e=\sum e_{i}$; we need to construct (e, f, h) s.t. eeg's of h are even. so that the cor implies $\operatorname{dim} Z_{g}(e)=\operatorname{dim} Z_{g}(h)=\operatorname{dim} h \Rightarrow e$ is maximal.

1) Fix simple roots α_{i}. We are given $e_{i} \in \Pi_{\alpha_{i}} ;$ a l_{0} fix $e_{-i} \in \Pi_{-\alpha_{i}}$.
2) Fix $h_{i}=c_{i}\left[e_{i}, e_{-i}\right]$ att $\alpha_{i}\left(h_{i}\right)=2$. These form a basis of h.
3) Fix $h=\sum \mu_{i} h_{i}$,.t. $\alpha_{i}(h)=2 \forall i$.
4) To complete the $s l_{2}$-triple, set $f:=\sum \mu_{i} e_{-i}$.

Now by construction, (e, $, f, h$) is an $s l_{2}$-triple (this can be verified by direct computation of the commutator relations), and ad h has only even cig's (sine $\alpha_{i}(h)=2 \forall$ simple roots). I

4 Slices
We are interested in Slodowy slices.
Def Fix $e \in \mathcal{N} \subset g$, and choose an $s l_{2}$-triple (e,,$t h$).
Let $\mathbb{O}=G$.e be the orbit of e and $5:=Z_{g}(t)$.
The Slodowy slice, aka standard slice, is $e+5=e+Z_{g}(t)$.
Prof The affine space $e+5$ is transverse to (1) in g, and $(e+s) \cap(\mathbb{D}=e$.
Proof

1) T_{0} show transversality, we need to show $T_{e}(e+s) \oplus T_{e}(\mathbb{D}) \simeq T_{e}(g)$.

But $T_{e}(e+5)=5, T_{e} \mathbb{D}=T_{e}(G . e)=[g, e]=\operatorname{im}(\operatorname{cad} \mathrm{e})$, and $T_{e} g=g=\operatorname{ker}(\operatorname{lad} f) \otimes \operatorname{im}($ (add $)$
2) To show that $(e+5) \cap \mathbb{Q}=e$, we define $a \mathbb{C}^{x}$-auction on $e+s$.

Recall the map $\gamma: \mathbb{C}^{x} \rightarrow G$, s.t. $e=t^{2} \cdot A d\left(\gamma(t)^{-1}\right)(e)$.
Then define $\mathbb{C}^{x} \times(e+s) \rightarrow e+s$ by $(t, e+s) \mapsto e+t^{2} \cdot \operatorname{Ad}\left(\gamma(t)^{-1}\right)(s)=t^{2} \cdot A d\left(\gamma\left(t^{-1}\right)\right)(e+s)$.
Now, $5=\operatorname{ker}(a d f)$ has only louse, hence non-positive, eeg's for ad h action. So $A d\left(\gamma(t)^{-1}\right)$ acts by nonnegative weights; $t \mapsto t^{2} \cdot \operatorname{Ad}\left(\gamma(t)^{-1}\right)$ acts by strictly positive weights, so $\forall_{s} \in s$, we have a contracting map $\lim _{t \rightarrow 0} t(e+s)=e$. It remains to know that $\mathbb{1} \cap(e+9)$ is \mathbb{C}^{x}-stable, see Prop 3.7.6. व

Cor
Lemma 3.2.20 tells us that for some open ubhd $e \in U \subset$ g, $\mathcal{N} \cap(e+5) \cap U$ is a transverse slice to \mathbb{D} in \mathcal{N}.

Prof

$\mu^{-1}(e)$ is a homotopy retract of $\mu^{-1}(e+5)$.

Proof
Omitted, see book.

5 Structure of $Z_{6}(e)$.
0) Clearly Lie $Z_{G}(e)=Z_{g}(e)$.

1) Pick $s l_{2}$-triple (e, f, h). Then ad h induces grading $g=\bigoplus_{n \in Z} g_{n}$. Put $Z_{n}:=Z_{g}(e) \cap g_{n}$. This gives a grading $Z_{g}(e)=\bigoplus_{n \geq 0} Z_{n}$.
2) This sum runs over only nonneg. integers bl $Z_{g}(e)=\operatorname{ker}(\operatorname{cal} e)$, only highest weights.
3) Therefore $u:=\bigoplus_{n>0} Z_{n}$ is a nilpotent ideal in $Z_{g}(e)$, corresponding to unipotent subgroup $U \subset Z_{G}(e)$.
Lemma
4) $u=i m(e) \cap \operatorname{ker}(e)$.
5) $h+U=U \cdot h$ is stable under adjoint U-action, and is a single U-orbit.

Proof

1) Immediate by structure diagram of $5 l_{2}$-modules.
2) It's dear that $[h, 4]=4$, so $T_{h}(0 . h)=T_{h}(h+4)$. This implies that $U . h$ is dense +closed in $h(T)$ is unipotent hence all of $h+c h$. $\rightarrow v$ is unipotent
Now we can prove two results from the beginning of $\$ 3.7$.
Prop
Fix $e \in \mathcal{N} \subset g$.
Then $\gamma: g l_{2} \rightarrow g$ sending $e \mapsto e$ is determined uniquely up
to conjugation by the unipotent radical $U \subset Z_{G}(e)$,
ie., the $U \subset Z_{g}(e)$ where $u=\operatorname{im}(e) \cap \underset{Z_{g}(e)}{\operatorname{ker}(e)}{ }_{(e)}^{(1)}$

$$
z_{g}^{\prime(e)}
$$

Proof
Let (e, f, h) and $\left(e, f^{\prime}, h^{\prime}\right)$ be two sll_{2}-triples.

1) If $h=h^{\prime}$, then we claim that $f=f^{\prime}$ as well. Note:

$$
\begin{aligned}
& \text { en we claim that } f=f^{\prime} \text { as well. } \\
& {[f, e]=h=h^{\prime}=\left[f^{\prime}, e\right] \Rightarrow\left[f-f^{\prime}, e\right]=0 \Rightarrow f-f^{\prime} \in \operatorname{ker}(a d e)=Z_{g}(e) \text {. }}
\end{aligned}
$$

But $f-f^{\prime}$ has h-deg -2 , so $f-f^{\prime} \in Z_{g}(e)_{-2}=0 \Rightarrow f=f^{\prime}$.
2) Now $[h, e]=2_{e}=\left[h^{\prime}, e\right] \Rightarrow\left[h-h^{\prime}, e\right]=0 \Rightarrow h-h^{\prime} \in Z_{g}(e)=\operatorname{ker}(e)$.

But $h-h^{\prime}=\left[f-f^{\prime}, e\right] \in \operatorname{im}(e)$. So $h-h^{\prime} \in \operatorname{im}(e) \cap \operatorname{ker}(e)=4$.
3) The lemma implies that $\exists n \in U$ with why $u^{-1}=h^{\prime}$.

One easily checks that $\left(e, u f u^{-1}, u h u^{-1}=h^{\prime}\right)$ is an $5 l_{2}$-triple,
So by part 1), $u \mathrm{fu}^{-1}=f^{\prime}$.
Def
Let $\left(e, f_{1} h\right)$ be an $5 l_{2}$-triple. Write $G_{S L_{2}}=Z_{G}\left(S L_{2}\right)$ to be the simultaneous centralizer of (e, f, h) in G.

Prop

1) $G_{S L_{2}}$ is a maximal reductive subgroup in $Z_{G}(e)$.
2) U is the unipotent radical of $Z_{G}(e)$.

Proof
Omitted.
Sketch of proof of Jacobson-Morozov thu

1) First we want to shrink $Z_{g}(e)$ until it only contains nilpotent elements. We do this by repeatedly cutting out non-nipotents. $\tau_{0} x \in Z \mathrm{Z}(e)$, if $x \notin \mathcal{N}$, then Jordan form $x=s+n \Rightarrow[x, e]=0 \Rightarrow[s, e]=0 \Rightarrow s \in Z_{g}(e)$. Then replace g with $Z_{g}(s) \ni e$, or rather the semisimple part of $\mathrm{Zg}(s)$. This shrinks the dimension, reductive and romper removes x, so we're done by induction on dim.
2) We now find a semisimple h with $[h, e]=2 e$.

First take any $x \in g$ with $[x, e]=2 e$. Then $x=n+s$ (Jordan form), and e is an eigenvector for both ad n, ad s. But ad n is nipotent, so $\operatorname{ad} n(e)=0 \Rightarrow a d x(e)=$ ad $s(e)=2 e$. So $h=s$ suffices.
3) Now we find f. Use h to get a grading. We want $f \in g-2$ and $\operatorname{ad}(e)(f)=h$, ie. we just ned $h \in \operatorname{im}(e)$, then any $f \in\left(\operatorname{ad}(e)^{-1}(h)\right.$ suffices. Arguing as in 3.2.16, $\quad h \in \operatorname{im}(e) \longleftrightarrow k\left(h, Z_{g}(e)\right)=0 \longleftrightarrow \operatorname{Tr}(\operatorname{adh} \cdot \operatorname{ad} x)=0$ killing form $\quad \forall x \in Z_{g}(e)$.
 ad \times (is)
$+(>0)$, so nothing remains a trace)

