83.1

L Main Hum (Jacobson-Morozov) Let g be semisimple Lie alg/ke field o. For all nilpotent egg, there exists hif Eg sit. (e, f, h) form an 5lz-triple: 1) [h,e]=2e, [h,f]=-2f, [e,f]=h 2) I Lie alg hom 7: gl, (a) -> g sending ense 3) hegss and fen. Given eENCB. $\exists \operatorname{map} \gamma \operatorname{SL}_2(\mathcal{C}) \rightarrow \mathcal{G}$ Proof postponed to end of \$3.7. \$ 5.t. dr: (00)-0 e. Det we say (e,f,h) is an sla-triple. Cov Since $sl_2 > h \iff (t_{\pm 1}) \in Sl_2(0)$ we get a how. T. CX -> G ct. Note that this triple is not unique!! In fact, non-uniqueness is measured by: $\gamma(t)e \gamma(t)^{2} = t^{2} e$ Then V: Slz -> g sending eral is determined uniquely up Frop Fix eENCg. to conjugation by the unipotent radical of $Z_G(e)$, i.e., the $U \subset Z_G(e)$ where $U = im (e) \cap ker(e)$. Provet Again postponed to ond of §3.7. D $\begin{array}{c} E \\ E \\ Let \\ g = SL_n(E). \\ Then any e \\ e \\ conjugate to a direct sum of \\ conjugate to direct sum of \\ conjugate$ Jordon blocks, so it suffices to $f = \begin{pmatrix} \mathbf{0} & \mathbf{0} & & & \\ m-1 & \mathbf{0} & \mathbf{0} & & & \\ \mathbf{0} & 2(m-2) & \mathbf{0} & & & \\ & & \ddots & & \\ & & & -2(m-2) & \mathbf{0} & \mathbf{0} \end{pmatrix}.$ deal with a single Jordon black. But we can write down h and f explicitly:

3
1) Fix
$$e \in N \in \mathbb{R}$$
.
2) Choose an Sl_2 -triple (e,f,h), so that $Sl_2 \hookrightarrow \mathbb{R}$, and g is an Sl_2 -module
3) ad h acts on g by Z -weights. This induces a grading
 $Q = \bigoplus gn$, $gn := \{x \in \mathbb{R}, \text{ od } h(x) = n \cdot x \}$.
Note that Lie $Z_G(e) = Z_g(e) = \ker(ad e)$.
(Cr
1) All eighs of ad h on $Z_g(e)$ are in $Z_{\geq 0}$.
3) If all eighs of ad h or $Z_g(e)$ are in $Z_{\geq 0}$.
3) If all eighs of ad h ove even, then dim $Z_g(e) = \dim Z_g(h)$.
Probe Use the picture.
1) $Z_g(e)$ is all of the highest weight spaces in each row.
 g_{ij} symmetry, all weights are ≥ 0 .
3) The rows are in bijetion with integs in the direct sum docomp size en weight
 $\dim Z_g(h) = \dim g_i = \# \operatorname{integral} (h) = n \cdot h$ for $h \otimes h \otimes h$.
Part (2) of this Corollary gives us an ensymmet.
Free simple roots. Then $Z_G(a) = \dim Z_g(h) = \dim h$ is reverse the forestimated.
 g_{ij} simple roots die die given $e \in R_i$; also fix $e : eradi.$
 $gives not under $Z_g(h) = \dim Z_g(h) = \dim h$ is $e \in I$.
 $for simple roots die M are given $e \in R_i$; also fix $e : eradi.$
 $gives h = Grieffield for $Z_g(h) = \dim z_g(h) = \dim h$ and $d(h) = 2(h) = 1$.
 $gives h = Ci (e,e,i) st $d(h) \geq 2$ the fix $e = h$ is $e \in I$.
 $gives reverse fix $d(h) \geq 2$ the fix $e = Erd$.
 $gives reverse fix $d(h) \geq 2$ the fix $e = Erd$.
 $gives reverse fix $d(h) \geq 2$ the fix $e = Erd$.
 $gives reverse fix $d(h) \geq 2$ the fix $e = Erd$.
 $gives reverse reverse fix $d(h) \geq 2$ the fix $e = Erd$.
 $gives reverse reverse fix $d(h) \geq 2$ the fix $e = Erd$.
 $gives reverse reverse fix $d(h) \geq 2$ the fix $d(h) \geq 2$ the$$$$$$$$$$$

4. Sinces
We are interested in Sladowy slices.
Def Fix ee N cg, and choose an sl_2-triple (e,f,h).
Let
$$D = G.e$$
 be the orbit of e and $S := Zg(f)$.
The Sladowy rive, at standard slice, is $e+g=e+Zg(f)$.
Prof The affine space $e+g$ is transverse to D in g, and $(e+g) \cap D = e$.
Proof
1) To show transversality, we need to show $T_e(e+g) \oplus T_e(D) \simeq T_e(g)$.
But $T_e(e+g) = 5$, $T_e D = T_e(G.e) = Ig, e] = in(ale)$, and $T_eg = g = ker(ad f) \oplus in(ale)$
But $T_e(e+g) = 5$, $T_e D = T_e(G.e) = Ig, e] = in(ale)$, and $T_eg = g = ker(ad f) \oplus in(ale)$.
Recall the map $Y: Cx > G$, st : $e = t^2 Ad(x(c)^2)(c)$.
Recall the map $Y: Cx > G$, st : $e = t^2 Ad(x(c)^2)(c)$.
Now, $S = ker(ad f)$ has only (anot, have integrative, eight for ad h action.
Now, $S = ker(ad f)$ has only (anot, have integrative, eight for ad h action.
Now, $S = ker(ad f)$ has only (anot, have a contracting map $f = T_e(e) = e$.
It remains to know that $D \cap (e+g)$ is C^x -stable, see frop 3.7.6. If
(eff) $O \cap (e+g) \cap V$ is a transverse slice to D in N .

5 Structure et Zgle).