3.5

Goal: construct all irreps of $H(z) \simeq \mathbb{Q}[\omega]$ in a purely geometric way.
 $\mu \downarrow$, N

Borel-Moore always with \mathbb{Q}-coeds
ex

$$
Z_{x}=B_{x} \times B_{x}
$$

for $x \in \mathbb{N}$

$$
1 H^{B M}\left(B_{x}\right)=: H\left(B_{x}\right)
$$

$$
Z \cdot Z_{x}=Z_{x}=Z_{x} \cdot Z
$$

Therefore, convolution gives us:
Lemma

$$
H(2 x):=H_{2 \cdot \operatorname{dim} B_{x}}^{B M}(2 x) \text { is an } H(2) \text {-bimodule. }
$$

But Kunneth formula tells us that

$$
H\left(Z_{x}\right) \simeq H\left(B_{x}\right) \otimes H\left(B_{x}\right)_{5}^{5} \quad H\left(B_{x}\right):=H_{\operatorname{dim} B_{x}}^{B M}\left(B_{x}\right) \text {. }
$$

From $Z \circ B_{x}=B_{x}=B_{x} \circ Z \quad \underset{\text { Prof }}{\text { Prof }} \quad \underset{(2 x)}{~}$
$H\left(B_{x}\right)$ has a left-H(2)-module and vight-H(2)-module structure, denoted by $H\left(B_{x}\right)_{L}, H\left(B_{x}\right)_{R}$.

Kunneth now tells us:
Pref

$$
H\left(Z_{x}\right) \simeq H\left(B_{x}\right)_{L} \otimes H\left(B_{x}\right)_{R} \text { as } H(2) \text {-bimodules. }
$$

Now, $G \curvearrowright N$ by conjugation, hence

$$
\begin{aligned}
g: x \mapsto g \times g^{-1} \Rightarrow g: B_{x} & \rightarrow B_{g \times g^{-1}} \\
b & \mapsto g b g^{-1}
\end{aligned}
$$

Prof G-action and $H(z)$-ration on $H\left(B_{x}\right)$ commute:

$$
\begin{array}{cc}
\forall g \in G, \quad z \in H(z), \\
H\left(B_{x}\right) \xrightarrow{g} H\left(B_{g \times g^{-1}}\right) \\
2 & \downarrow z \\
\forall\left(B_{x}\right) \xrightarrow{g} H\left(B_{g \times g^{-1}}\right)
\end{array}
$$

Proof
$G \curvearrowright z$, hence $G \rightarrow \operatorname{Ant}(H(z))$.
So $\quad g(z) \cdot(g(c))=g(z \cdot c)=\downarrow \rightarrow$.
But G is connected, so G acts trivially on $H(z)$, hence $g(z)=z$ and the LHS is $z \cdot g(c)=\rightarrow \downarrow$.

Now since $G_{x}=\left\{\begin{array}{c}\text { centralizer of } \\ x \in \mathcal{N}\end{array}\right\}$ preserves B_{x},

$$
G_{x}: B_{x} \rightarrow B_{x}
$$

So the from tells us that G_{x} action and $H(z)$ action commute.
But G_{x}^{0} acts trivially on homology, so conn. comp. of identity

$$
\begin{aligned}
& \text { on } H\left(B_{x}\right) \\
& C(x)=G_{x} / G_{x}^{0} \\
&=\pi_{0}\left(G_{x}\right)
\end{aligned}
$$

is the one we want:
Lemmas
$C(x), H(2)$-action on $H\left(B_{x}\right)$ commute. either left or right.
Since $C(x)$ is a finite group, and $H\left(B_{x}\right)$ is f-d. vector space,
prof Using \mathbb{C}-coeds,

$$
H\left(B_{x}\right)_{L} \simeq \bigoplus_{\substack{\pi-\text { irrep } \\ \text { of } C(x)}}^{\mathbb{D} \text {-cots, }} \mathbb{\underbrace { } _ { \text { multiplicity } } \pi \otimes H (B _ { x }) _ { L , \pi } ,}
$$

and $H\left(B_{y}\right)_{L, \pi}$ are $H(z)$-modules.
Remark
we should use \mathbb{C} coots to ensure semisimplicity, but actually $C(x)$-irreps are all defined over \mathbb{Q} for mort G anyway (everything except E_{8}).

Def
Let A ben Q-alg, let M be a left A-mod.
Then $M^{v}:=\operatorname{Hom}_{Q}(M, \mathbb{Q})$ is a right A-mod.

$$
(\varphi \cdot a)(m)=\varphi(a \cdot m) .
$$

Claim
$\left(H\left(B_{x}\right)_{L}\right)^{v} \simeq H\left(B_{x}\right)_{R}$ as right $H(2)$-mod, with compatible $((x)$-action.

$$
C(x) \curvearrowright\left(1+\left(B_{x}\right)_{L}\right)^{\vee} \text { by }(g \cdot \varphi)(h)=\varphi\left(g^{-1} \cdot h\right)
$$

Proof
deterred to §3.6. D
MAIN TAM

1) $H\left(B_{x}\right)_{\pi}$ is a simple $H(z)_{C} \bmod \forall x \in N, \pi \in I_{\text {rep }}(C(x))$
2) $H\left(B_{x}\right)_{\pi} \cong \cong_{H(2) \ldots+} H\left(B_{y}\right)_{\psi} \longleftrightarrow(x, \pi) \underset{G-\text { conj. }}{\sim}(y, \psi)$.
3) All simple (complex) $H(2)_{\mathbb{e}} \bmod$ arise in this way.

In other words,

$$
\left\{H\left(B_{x}, C\right) \pi \mid \text {-coin. classes of pairs } \begin{array}{ll}
(x, \pi) \\
1 & \\
& \in N \\
\text { of of ep } C(x)
\end{array}\right\}
$$

forms a complete set of irreps of $H(z, a) \simeq \mathbb{C}[\omega]$.
Ex If $x \in \mathcal{N}^{\text {reg }}$, then $B_{x}=\sum_{p} t \xi b / c \quad \exists$ unique bored $b \nexists x$.
Then $H\left(B_{x}\right)=H_{0}^{g m}\left(\left(_{p}\right)=\mathbb{Q}\right.$, which corresponds to the trivial W-rep.

