D Springer resolution
Def N cg is the nilpotent cone, i.e., set of all nilpotents in g.
This is singular only of O.
Def
$$\widetilde{N}$$
 is defined by $\widetilde{N} \hookrightarrow \widetilde{g}$ $\widetilde{X} = \xi$ (n.b) [xeb and xeN3
 $\widetilde{N} \hookrightarrow \widetilde{g}$
Prof $\widetilde{N} = G_X \sqcap$
as G -equivariant vector bundles.
Prof basically ble $x \in b \cap N \iff x \in n$, and all things
 $respect G$ -conjugation.
Get \widetilde{N} smooth
Now identify $g \Longrightarrow g^*$ by Killing form.
Because $g^* \supset b^{\perp} \iff \Pi \subset G$, we get
 Prof $T^*B = G_X b^{\perp} = G_X \sqcap = \widetilde{N}$.
Since the moment map on T^*B is $(g, x) \vdash x$.
Since the moment map on T^*B is $(g, x) \vdash x$.
 Prof therefore, map $\mu: T^*B = \widetilde{N} \longrightarrow N$ is called Springer resolution.

2) In trinsically defining nilpotence

$$g \rightarrow g^{*}$$
 via Killing form.
Def $x \in g^{*}$ is nilpotent if $x \in g$ is nilpotent.
This is not intrinsic; depends on iso $g \rightarrow g^{*}$.
Def let $C[g]_{+}^{c} \in C[g]^{C}$ be the ideal of poly's with we contact term.
Prove (unit)
 $x \in g$ is nilpotent $\Rightarrow P(0)=0 \lor P \in C[g]_{+}^{c}$.
(as $x \in g^{*}$ is nilpotent $defined$ intrustically.
(be have diagram $x \in g^{*} = x \text{ and } [u^{(g)}]$.
This is not contact term.
 $y \mapsto y \mapsto x \text{ and } [u^{(g)}]$.
Then we can upgrade to:
 $y \mapsto y \mapsto x \text{ and } [u^{(g)}]$.
 $(ar (Vortunt))$
 $f(0) - N \xrightarrow{g}$
 $f(0) - N \xrightarrow{g}$