
2.1 Hilbert’s Nullstellensatz
Let A be an associative C-algebra with unit, not necessarily commutative.

Proof.
Suppose for the sake of contradiction that Spec a = ∅. Then (a − λ) is always invertible and
{(a − λ)−1 ∣ λ ∈ C} forms an uncountable family of elements of A, hence there must be some
finite nonempty subset which is linearly dependent. But then we just clear denominators and
find some polynomial P(t) ∈ C[t] such that P(a) = 0. Thus we can factor P  and get

contradicting invertibility of (a − λ) for all λ.

Now if a is nilpotent, then an = 0 so 0 ∈ Spec a. For λ ∉ C we can write (a − λ)−1 as an infinite
geometric series in a - but since a is nilpotent, this series terminates and the inverse is well-
defined as a polynomial. It follows that a − λ is invertible.

If Spec a = {0}, then we just repeat the first argument (since C ∖ {0} is still uncountable). Then
we find that

Definition 1.

For a ∈ A, define

Spec a = {λ ∈ C ∣ a − λ is not invertible}.:

Remark 2.

The motivation comes from many places. If A = Matn(C), then Spec a is just the set of
eigenvalues of a, equivalent to roots of its characteristic polynomial. If A is the algebra of
continuous functions [0, 1] → C, then Spec a is just the image of a.

Theorem 3 (Nullstellensatz).

Assume that dimC A is countable. Then for all a ∈ A we have Spec a ≠ ∅. Also, a is nilpotent iff
Spec a = {0}.

(a − λ1)(a − λ2) ⋯ (a − λn) = 0,

an(a − λ1) ⋯ (a − λm) = 0.



□

□

□

□

Since we assumed that a − λi are invertible, we find that an = 0.

Proof.
We have C ↪ A; pick a ∈ A ∖ C. Then for any λ ∈ C, we have a − λ ≠ 0, hence is invertible.
But then Spec a = ∅, contradicting Theorem 3 (Nullstellensatz).

Proof.
Let 0 ≠ f ∈ EndA(M). Then ker f and im f are A-submodules of the simple module M, hence
ker f = 0 and im f = M, so M is invertible.

Proof.
First, M is simple, so A ⋅ m = M or 0 for any 0 ≠ m ∈ M. Picking m such that A ⋅ m = M, we
have A ↠ M, hence dimC M is also countable.

Next, for m such that A ⋅ m = M, it follows that any endomorphism f ∈ EndA(M) is uniquely
determined by f(m) ∈ M. Thus dimC EndA(M) ≤ dimC M is countable.

Now Lemma 5 (Schur) implies that EndA(M) is a skew field, and Corollary 4 implies that it’s
actually C.

Corollary 4.

If A is a skew field of at most countable dimension over C, then A = C.

Lemma 5 (Schur).

Let M  be a simple A-module. Then EndA(M) is a skew field.

Corollary 6.

Let M  be a simple A-module. If dimC A is countable, then EndA(M) = C.

Corollary 7.

Let g be a finite-dimensional complex Lie algebra. Let U(g) be its universal enveloping algebra.
Let Z(g) be the center of U(g).
For any simple g-module M , the center Z(g) acts by scalars.



□

Proof.
U(g) has a PBW basis, which is countable, hence has countable dimension. Then Corollary 6
implies that EndU(g)(M) = C.

By definition Z(g) commutes with elements of U(g), so we have a map

2.2 Affine Algebraic Varieties
We’ll actually skip most of this section until Poincaré series, since it’s basically just review of
algebraic geometry.

Let E = ⨁i≥0 Ei be a graded vector space with each Ei being finite-dimensional.

For a graded F ⊂ E, we have

We also have the notion of the tensor product of graded vector spaces, given by

Z(g) → EndU(g)(M) = C.

Definition 8 (graded dual).

The graded dual of E is defined to be

E ∗ = ⨁
i≥0

(Ei)
∗.:

F ⊥ = AnnE ∗(F) ≃ (E/F)∗.:

(E ⊗ E ′)k = ⨁
i+j=k

Ei ⊗ E ′
j.

Remark 9.

The hypothesis that the graded components are bounded below is crucial so that the graded
components of tensor products are still finite-dimensional.

Definition 10 (Poincaré series).

To a graded vector space E, we define its Poincaré series P(E) as the formal power series

P(E) =
∞

∑
i=0

(dimEi)t
i.



Although the vector spaces we are working with are now infinite-dimensional, the key condition
that the graded components are all finite-dimensional allows us to essentially work with
dimension arguments as usual.

2.3 The Deformation Construction
Lattices

Let A be a ring with unit and t ∈ Z(A) a central element which is not a zero-divisor, such that

Let At = A[t−1] be the localization of A at t. Let M be a finitely generated At-module.

An equivalent characterization is that ⋃k≥0 t
−kL = M, so that the missing elements get “filled in”

by the t−1-action on L. (Perhaps if t is associated with “somewhat large,” then t−kL essentially
fills in the gaps, so L indeed looks like a lattice in M.)

Lemma 11.

1. P(E ⊗ E ′) = P(E) ⋅ P(E ′).
2. P(E/F) = P(E) − P(F).

3. P(E ∗) = P(E).

⋂
i≥1

tiA = {0}.

Definition 12 (lattice).

A lattice in M  is a finitely generated A-submodule L ⊂ M  such that At ⋅ L = M .

Example 13.

Let A = C[t] and M = At = C[t, t−1]. Then L = tnC[t] is a lattice for any n ∈ Z.

Proposition 14.

For any two lattices L,L′ there are nonnegative integers a, b ≥ 0 such that

ta ⋅ L ⊂ L′ ⊂ t−b ⋅ L.



□

Proof.
Since L′ is finitely generated, pick a finite set of generators u1, … ,ur. Then each
ui ∈ M = ⋃k≥0 t

−k ⋅ L, so there exists b ≥ 0 such that ui ∈ t−b ⋅ L for all i. It follows that
L′ ⊂ t−b ⋅ L. The other direction follows by symmetry.

From now on, assume that A is noetherian.

Let K+(A) denote the Grothendieck semigroup of finitely-generated A-modules; let K(A) be
the Grothendieck group.

Proof.
The basic idea is to check the statement when L,L′ are “adjacent” lattices, then extend one
step at a time.

Adjacent means that

Then we form the short exact sequences

which gives us

Finally, it suffices to note that t ⋅ L/t ⋅ L′ ≅L/L′. Thus if L,L′ are adjacent then we have the
result. Now we just need to construct adjacent lattices; we can do this by taking Lj = L + tj ⋅ L′

Lemma 15.

Suppose we have a short exact sequence of At-modules 0 → M ′ → M → M ′′ → 0. Let L ⊂ M  be
a lattice. Then:

1. We get lattices L′ = L ∩ M ′ in M ′ and L′′ = L/(L ∩ M ′) in M ′′.: :

2. 0 → L′ → L → L′′ → 0 is exact.

Lemma 16.

For any two lattices L,L′ ⊂ M , we have that

[L/t ⋅ L] = [L′/t ⋅ L′] ∈ K+(A/t ⋅ A).

t ⋅ L′ ⊂ t ⋅ L ⊂ L′ ⊂ L.

0 → L′/t ⋅ L → L/t ⋅ L → L/L′ → 0,

0 → t ⋅ L/t ⋅ L′ → L′/t ⋅ L′ → L′/t ⋅ L → 0

[L/t ⋅ L] = [L′/t ⋅ L] + [L′/t ⋅ L],

[L′/t ⋅ L′] = [t ⋅ L/t ⋅ L′] + [L′/t ⋅ L].

:



□
; then Lj,Lj+1 are adjacent, and for large j, Lj = L, while for small j, Lj = tj ⋅ L′.

Rees algebra

Let B be a ring with a separating Z-filtration:

with ⋃n∈Z
Bn = B, ⋂n∈Z

Bn = 0, and 1 ∈ B0; we also have Bi ⋅ Bj ⊂ Bi+j.

The following statements are fairly straightforward.

This has a natural geometric interpretation. Let X = SpecB where B has a Z-filtration as above.
Then consider X̂ = Spec B̂. We have a natural map C[t] ↪ B̂, giving us a surjection

Since t is not a zero-divisor, B̂ is flat over C[t], so we have a flat family X̂ over A1. Let’s identify
A1 ≃ C. Then the fiber over 0 is

On the other hand, the fibers over C× are all just copies of X:

⋯ ⊂ B−1 ⊂ B0 ⊂ B1 ⊂ ⋯ ,

Definition 17 (Rees algebra).

Define the Rees algebra of B with respect to the filtration above to be

B̂ = ∑
n∈Z

Bn ⋅ tn ⊂ B[t, t−1].:

Proposition 18.

1. B̂ is a subring of B[t, t−1].

2. B̂ is a Z-graded ring, graded by the powers of t, so that (B̂)i ≅Bi.

3. t ∈ B̂ is central and not a zero-divisor.

4. ⋃k≥0 t
−kB̂ = B[t, t−1].

5. B̂/t ⋅ B̂ ≅grB.

6. (B̂)t = B[t, t−1].

:

f : X̂ ↠ A1.

f−1(0) = Spec B̂/t ⋅ B̂ = Spec grB.

f−1(C×) = Spec (B̂)t = SpecB[t, t−1] = X × C×.



We have an interesting picture when we choose a specific filtration for B. Let Y ⊂ X be a
smooth closed subvariety, and let IY ⊂ O(X) = B be the defining ideal of Y . Let’s consider the
Z-filtration

Then we have

where TYX is the normal bundle of Y  in X. On the other hand,

So once again we have a flat family Spec B̂ over A1 ≃ C; here, the special fiber is the normal
bundle

while the remaining fibers are all X = SpecB:

We can also put filtrations on the modules. Suppose M is a finitely generated B-module, with a
separating Z-filtration (i.e., ⋂Mi = 0) compatible with the Z-filtration on B (i.e., Bi ⋅ Mj ⊂ Mi+j).
Then grM is a grB-module. We can construct the Rees module of M in the same way:

Clearly M̂ is a graded B̂-module, and M̂/t ⋅ M̂ = grM.
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grB = ⨁
k≥0

I
k
Y /I k+1

Y = ⨁
k≥0

S k(IY /I 2
Y ) = O(TYX),

(B̂)t = B[t, t−1] = B ⊗C C[t, t−1].

f−1(0) = TYX,

f−1(C×) = Spec (B̂)t = X × C×.

M̂ = ∑
n∈Z

Mn ⋅ tn ⊂ M[t, t−1].:

Definition 19 (good filtration).

A filtration {Mn} on M  is a good filtration if it satisfies one of the following equivalent
conditions:

1. M  is finitely generated in a strong sense: there are m1, … ,mr ∈ M  so that
Mn = ∑r

i=1 Bn+ki ⋅ mi for k1, … , kr ∈ Z.

2. M̂  is B̂-lattice in M[t, t−1].
If Bi = 0 for all i < 0, then there’s another equivalent formulation.

3. grM  is finitely generated over grB.



□

Good filtrations are really easy to construct in practice; for example, we can define Mn via
condition 1 of Definition 19 (good filtration) by picking some generators, and this automatically
constructs a filtration on a finitely generated module M. The only downside is that this is far
from canonical, which is why we need to pass to K-theory.

Proof.
Use Lemma 16. We have grB = B̂/t ⋅ B̂, and for a module M with filtrations Mi and M ′

i , we
have [M̂/t ⋅ M̂] = [M̂ ′/t ⋅ M̂ ′] = [grM].

Additionally, many properties can be checked on K-theory.

Specialization in K-theory

As in the setup in Rees algebra, let B be a ring, flat over C[t], and let X = SpecB. Then we
have the map f : X → A1 ≃ C, with special fiber

and the preimage over the open set C×

We want to define a specialization morphism

“specializing” a module on the dense open subset to the special fiber. We will define it as
follows. Let M ∈ K+(X×) be a finitely generated Bt-module, and choose any lattice L ⊂ M.
Then by definition L is a finitely generated B-module. Therefore L/t ⋅ L is a finitely generated

Corollary 20.

The class [grM] ∈ K+(grB) does not depend on the choice of good filtration.

Proposition 21.

Suppose M,N  are filtered B-modules such that Mi = Ni = 0 for i ≪ 0. Then:

1. If grM  is a free grB-module of rank r, then M  is a free B-module of rank r.
2. If ϕ : M → N  is a map of filtered B-modules such that the induced map on associated graded

is an isomorphism, then ϕ itself was already an isomorphism.

X0 = f−1(0) = SpecB/t ⋅ B:

X× = f−1(C×) = SpecBt.:

lim
t→0

: K+(X×) → K+(X0),



B/t ⋅ B-module, and Lemma 16 implies that the class [L/t ⋅ L] ∈ K+(X0) is independent of the
choice of lattice L. We declare that

and extend linearly.

2.4 C×-actions on a projective variety
Let X be a smooth complex projective variety with an Gm-action (recall that Gm ≃ C×). Embed
Gm ≃ C× ↪ CP1, so that the complement consists of exactly {0, ∞}.

Let W denote the C×-fixed points on X. We assume that W is finite.

lim
t→0

[M] = [L/t ⋅ L],

Example 22.

Suppose F  is a coherent sheaf on X, flat over A1. Then let F × = F |X×  and F0 = F |X0 . We have
that

(This is just translating the algebraic statement that M  is a lattice for itself, hence
limt→0[M] = [M/t ⋅ M] = [M ⊗B B/t ⋅ B].)

: :

lim
t→0

F
× = F0.

Lemma 23.

For every x ∈ X, the map z ↦ z ⋅ x has a limit as C× ∋ z → 0, ∞ ∈ CP1.
Furthermore, the limit points are precisely the fixed points of the C×-action.

Corollary 24.

The set of C×-fixed points on X is always nonempty.

Definition 25 (attracting set).

For each w ∈ W we define the attracting set

Xw = {x ∈ X ∣ lim
z→0

z ⋅ x = w}.:



Since w ∈ Xw, we have that C× ⋅ w = w, so C× ↷ TwX. But C×-representations are just graded
vector spaces, where

Note that n = 0 is not an eigenvalue since w is an isolated fixed point of the C×-action, so
locally around w the C×-action always moves points nontrivially.

Let

There is an extensive relationship between the Bialynicki-Birula decomposition and Morse
theory for Kähler manifolds, but we will skip it. We’ll only stop to say that the Bialynicki-Birula
decomposition on a Kähler manifold coincides with the cell decomposition from Morse theory.

2.5 Fixed Point Reduction

TwX = ⨁
n∈Z

TwX(n), TwX(n) = {x ∈ TwX ∣ z ⋅ x = znx∀z ∈ C×}.:

T +
w X = ⨁

n∈Z>0

TwX(n).:

Theorem 26 (Bialynicki-Birula).

The action of C× on X decomposes X into a disjoint union of affine spaces.

1. The attracting sets form a decomposition X = ⨆w∈W
Xw.

2. We have natural isomorphisms Xw ≃ Tw(Xw) ≃ T +
w X, which commute with C×-action.

Example 27.

Let X = CP1 with the standard C× action. Then W = {0, ∞}. We have

Then we have

X0 = CP1 ∖ {∞} ≃ A1,

X∞ = {∞} ≃ A0.

CP1 = A1 ⊔ A0.

Remark 28.

There is a generalization of this result where W is not discrete; in this case, the pieces of the
decomposition are parametrized by the connected components of W.



Let L be a Lie group.
Let X be a “reasonable” topological space; for example, this includes:

The proof is very long so we’ll skip it.

2.6 Borel-Moore Homology
This will be the primary method of producing representations of various algebras and groups.

Once again, a space X will be a “reasonable” space, e.g. a locally compact topological space
which has the homotopy type of a finite CW complex. Also, X is assumed to admit a closed
embedding into a countable at infinity C∞-manifold M. We assume that there is an open
neighborhood X ⊂ U ⊂ M such that X is a homotopy retract of U . A closed “subset” of a C∞

manifold will mean a subset which has an open neighborhood for which it’s a homotopy retract.

It is known that any complex or real algebraic variety satisfies these conditions so we
assume most spaces are one of these.

a possibly singular closed complex subvariety of a complex manifold
a finite-dimensional CW-complex
and we have a continuous L-action on X.
Let T  be a compact torus contained in the center of L. Let XT  be the T -fixed points of X.
Note that XT  is stable under the action of L.

Proposition 29.
Assume that L has finitely many connected components. Then:

1. We have [H ∙(X, C)] = [H ∙(XT , C)] ∈ K 0(L).
2. If H odd(X, C) = 0, then H odd(XT , C) = 0.

Remark 30.

Statement (1) holds in K 0(L−mod), but since the action of L on cohomology actually factors
through the group of connected components L (assumed to be finite here), then the equality also
holds true in K 0(L−mod). Furthermore, both Grothendieck groups can be upgraded to rings via
the tensor product of representations.

–

–

Corollary 31.

If the variety X has no odd-dimensional Q-homology, then [H even(X)] = [H even(XT )] ∈ K 0(L).–



Now we will provide equivalent definitions of the Borel-Moore homology. All coefficients are
taken to be C, but can be replaced with any field of characteristic 0.

1) one-point compactification

Let X̂ = X ⊔ {∞} be the one-point compactification of X. We define

the relative homology of the pair (X̂, ∞).

2) arbitrary compactification

Let X be an arbitrary compactification such that (X,X ∖ X) is a CW-pair. Then

3) infinite singular chains

Let CBM
∙ (X) be the chain complex of infinite singular chains ∑∞

i=0 aiσi, where σi is a singular
simplex and ai ∈ C, but the sum is locally finite: for any compact set D ⊂ X, there are only
finitely many nonzero ai for which D ∩ suppσi ≠ ∅. The usual boundary map ∂ is still valid on
this chain complex because taking boundaries does not ruin the finiteness condition. Then

4) Poincaré duality

Let M be a smooth oriented manifold of real dimension m, where X ↪ M as a closed subset
with an open neighborhood U  for which X is a proper deformation retract (as above). Then

In particular, for X = M, for any smooth (but not necessarily compact) variety M, we have a
canonical isomorphism HBM

i (M) ≃ Hm−i(M).

This is an especially useful definition given the power of Poincaré duality.

There is another definition using the distribution deRham complex.

Definition 32 (Borel-Moore homology).

Let X be a “reasonable” space as indicated before. The Borel-Moore homology of X, denoted by
HBM

∙ (X), is one of the following equivalent definitions.

HBM
∙ (X) = H∙(X̂, ∞),:

–––

HBM
∙ (X) = H∙(X,X ∖ X).:
––

HBM
∙ (X) = H∙(CBM

∙ (X), ∂).:

HBM
i (X) ≃ Hm−i(M,M ∖ X).



Proper pushforward

Let f : X → Y  be a proper map. We define the proper pushforward map

We can define this using 1) one-point compactification. Extend f to a map f̂ : X̂ → Ŷ  with
f̂(∞) = ∞. Then we get an induced map

Long exact sequence

Let U ⊂ X be open. Then for a compactification X of X (see 2) arbitrary compactification), we
have an induced restriction map

Now suppose we have a closed subset V ⊂ X. Then Let U = X ∖ V . We have

Now embed X ↪ M as a closed subset in a smooth manifold M. Poincaré duality gives us

Since U  is locally closed in M, we may shrink M to M ′ such that U ⊂ M ′ is closed. Then
excision implies that

The long exact sequence in relative cohomology gives us:

Now making the identifications, we find the long exact sequence in Borel-Moore homology

Fundamental class

Remark 33.

If X is compact, then HBM
∙ (X) = H∙(X), for example using 3) infinite singular chains.

f∗ : HBM
∙ (X) → HBM

∙ (Y ).

f̂∗ : H∙(X̂, ∞) → H∙(Ŷ , ∞).

–

HBM
∙ (X) = H∙(X,X ∖ X) → H∙(X,X ∖ U) = HBM

∙ (U).
––––

:

V ↪ X ↩ U .
i j

Hm−p(M,M ∖ X) ≃ HBM
p (X),

Hm−p(M,M ∖ V ) ≃ HBM
p (V ).

Hm−p(M,M ∖ U) ≃ Hm−p(M ′,M ′ ∖ U) ≃ HBM
p (U).

⋯ → H k(M,M ∖ V ) → H k(M,M ∖ X) → H k(M,M ∖ U) → H k+1(M,M ∖ V ) → ⋯

⋯ → HBM
p (V ) → HBM

p (X) → HBM
p (U) → HBM

p−1 (V ) → ⋯



In ordinary homology, when M is a smooth compact oriented manifold, then there exists a well-
defined fundamental class [M] ∈ Hm(M), for m = dimR M. Even when M is not compact, there
is a well-defined fundamental class in Borel-Moore homology:

This is particularly important and useful, and is an essential feature in Borel-Moore homology;
the fundamental class exists for any complex algebra variety, including those which are
not smooth or compact.

Let us now describe the fundamental class of an irreducible singular complex algebraic variety
X. Let X reg be the Zariski open dense subset of the nonsingular points of X. Let
m = dimR X = dimR X reg. Then X reg has a canonical orientation coming from the complex
structure on X reg. Therefore we have a fundamental class

Since X ∖ X reg has complex codimension at least 1, it follows that dimR X ∖ X reg ≤ m − 2, so

Then Long exact sequence implies that the inclusion X reg ↪ X induces a restriction map
isomorphism

Following this, we define

so that the “fundamental class” of X in HBM
m (X) is defined to be the preimage of the

fundamental class of X reg in HBM
m (X reg).

If X is an arbitrary complex algebraic variety with irreducible components X1, … ,Xn. Then we
define

[M] ∈ HBM
m (M).

Example 34.

Let M − Rn. Then H>0(M) = 0, so there cannot be a fundamental class in ordinary homology. But
in Borel-Moore homology, we can use the long exact sequence Long exact sequence of the pair
(Sn = Rn ⊔ ∞, Rn) to find that

HBM
i (Rn) = {C ⋅ {[Rn]} i = n,

0 i ≠ n.

[X reg] ∈ HBM
m (X reg).

HBM
>m−2(X ∖ X reg) = 0.

f : HBM
m (X) HBM

m (X reg).
∼

−→

[X] = f−1([X reg]),:



Note that this is a non-homogeneous element!

Intersection pairing

Let M be a smooth oriented manifold and Z,Z ′ two closed subsets (in the sense explained
before). Our goal is to define an intersection pairing which consider cycles alongside their
supports, rather than as just homology classes in the ambient manifold. We start with the
standard cup product in relative cohomology:

The Poincaré dual of this gives us the intersection pairing

Intersection pairing with ordinary homology

Let M be a closed subset (in the sense explained at the beginning) of a smooth oriented
manifold M. Then we have an analogue of Poincaré duality for cohomology with compact
support:

[X] = ∑
i

[Xi].:

Proposition 35.

Let X be a complex variety (not necessarily nonsingular) of complex dimension n. Let X1, … ,Xm

be the n-dimensional irreducible components of X. Then the top Borel-Moore homology has a
basis via [Xi], i.e.,

HBM
2n (X) =

m

⨁
i=1

C ⋅ [Xi].

∪ : Hm−i(M,M ∖ Z) × Hm−j(M,M ∖ Z ′) → H 2m−j−i (M, (M ∖ Z) ∪ (M ∖ Z ′)).

∩ : HBM
i (Z) × HBM

j (Z ′) → HBM
i+j−m(Z ∩ Z ′).

Remark 36.

This construction has a geometric meaning when M  is a real analytic manifold and Z,Z ′ are closed
analytic subsets in M . The basic idea is that we can identify HBM

∙ (Z) with the homology of the
complex formed by subanalytic chains, and then for subanalytic cycles c ∈ HBM

∙ (Z) and
c′ ∈ HBM

∙ (Z ′), we can choose representatives which intersect transversely at smooth points, hence
the set-theoretic intersection c ∩ c′ is a subanalytic cycle in HBM

∙ (Z ∩ Z ′). (We are skipping some
steps, but this is the general idea.)

Hm−i
c (M,M ∖ Z) ≃ Hi(Z).



We also have a cup product map

Now we apply Poincaré duality to obtain the intersection pairing

where m = dimR M.

In the special case when Z = Z ′ = M and i + j = m we get:

Künneth formula

Let M1,M2 be arbitrary CW complexes and take compactifications M1,M2. The Künneth
formula for ordinary homology is:

Then applying Poincaré duality we get a natural isomorphism

Restriction with supports

Let i : N ↪ M be a closed embedding of oriented manifolds, with codimension d. Let Z ⊂ M

be a closed, possibly singular, subset. We define the restriction with support in Z functor

Here, c ∩ [N ] takes place in the ambient manifold M. This is the result of Poincaré duality on the
standard restriction i∗ : H ∙(M,M ∖ Z) → H ∙(N ,N ∖ (N ∩ Z)).

∪ : Hm−i
c (M,M ∖ Z) × Hm−j(M,M ∖ Z ′) → H 2m−i−j

c (M, (M ∖ Z) ∪ (M ∖ Z ′)).

∩ : Hi(Z) × HBM
j (Z ′) → Hi+j−m(Z ∩ Z ′),

Proposition 37 (Poincaré duality).

Assume M  is an oriented connected (but not necessarily compact) smooth variety. Then for any j,
the intersection pairing

is non-degenerate. In particular,

∩ : HBM
j (M) × Hm−j(M) → H0(M) = C

HBM
j (M) ≃ Hm−j(M)∗ ≃ Hm−j(M).

––

H∙(M1,M1 ∖ M1) ⊗ H∙(M2,M2 ∖ M2) ≃ H∙ (M1 × M2,M1 × M2 ∖ (M1 × M2 ∪ M1 × M2)).
––––––––

⊠ : HBM
∙ (M1) ⊗ HBM

∙ (M2) → HBM
∙ (M1 × M2).

i∗ : HBM
k (Z) → HBM

k−d (Z ∩ N), c ↦ c ∩ [N ].

Remark 38.



Diagonal reduction

Let M be a smooth oriented manifold and iΔ : MΔ ↪ M × M be the diagonal. Then for closed
subsets Z,Z ′ ⊂ M we have a set-theoretic equality

Similarly, for homology classes c ∈ HBM
∙ (Z) and c′ ∈ HBM

∙ (Z ′), we have

In fact, we may even use this as an alternative definition of the Intersection pairing.

Smooth pullback

Let X be locally compact (not necessarily smooth) and p : X̃ → X a locally trivial fibration with
smooth oriented fiber F  of dimension d. We say that p is oriented if all transition functions of the
fibration preserve the orientation of the fiber. If p is oriented, we can define a natural pullback
morphism

We won’t explicitly construct p∗ here and will defer its description to chapter 8.

Now suppose X is embedded in a smooth oriented variety M, we have a locally trivial oriented
fibration –p : M̃ → M with fiber F , and p : X̃ = –p−1(X) → X is the restriction (which is also a
fibration). In this case the pullback map is induced by the standard pullback morphism in
cohomology –p∗ : H ∙(M,M ∖ X) → H ∙(M̃, M̃ ∖ X̃) via Poincaré duality. Furthermore:

Specialization in Borel-Moore homology

The map i∗ crucially depends on the ambient manifold M , even though it is not explicitly present in
the notation. For example, the map shifts the homology by d = dimM − dimN . So if we replace
M  by a really large smooth manifold then the shift will be even larger, and the map will even
become zero if the ambient space becomes too large.

(Z × Z ′) ∩ MΔ = ZΔ ∩ Z ′
Δ.

c ∩ c′ = i∗
Δ(c ⊠ c′) = (c ⊠ c′) ∩ [MΔ].

p∗ : HBM
∙ (X) → HBM

∙+d (X̃).

:

Proposition 39 (projection formula).

Let Z ⊂ M  and Z ′ ⊂ M̃  be closed subsets. Assume that –p−1(Z) ∩ Z ′ → M  is proper. Write Z ∘ Z ′

for its image in M  (it is a closed subset). Then for any c ∈ HBM
∙ (Z) and c′ ∈ HBM

∙ (Z ′), we have

–p∗(p∗c ∩ c′) = c ∩ (–p∗c) ∈ HBM
∙ (Z ∩ Z ′).



Let (S, o) be a smooth manifold of real dimension d with basepoint o. Write S× = S ∖ {o}. Given
a (possibly singular) space Z and a map π : Z → S, we set Zo = π−1(o) and for any subset
S ′ ⊂ S, write Z(S ′) = π−1(S ′). Assume that π : Z(S×) → S× is a locally trivial fibration (with
possibly singular fibers; note that π : Z → S is not assumed to be locally trivial near o). Then we
can define a specialization map

The construction is as follows. Let (B, o) ⊂ S be an open neighborhood diffeomorphic to (Rd, 0).
Choose a decomposition Rd = R × Rd−1. Write B>0 for the open subset corresponding to
R>0 × Rd−1, and shrink B as necessary until π : Z(B>0) → B>0 is a trivial fibration with fiber F .
Then the Künneth formula we find that

Then we have three maps: first, we have the restriction map induced by Z(B>0) ↪ Z(S×);
second, we have the chain of isomorphisms above, and third, we have the connecting
homomorphism in the long exact sequence of the pair Z(R≥0) = Z(R>0) ⊔ Zo. We define the
composition to be

It turns out that the specialization map does not depend on the choices made.

Furthermore, specialization enjoys a transitive property. Let S1 ⊂ S be a smooth submanifold of
codimension k. Let ε∗ : HBM

∙ (Z(S×)) → HBM
∙−k (Z(S×

1 )) be the pullback map induced by the
embedding Z(S×

1 ) ↪ Z(S×). Then

Also, the intersection pairing commutes with specialization, in that

Cohomology action

There is a natural H ∙(Z)-module structure on HBM
∙ (Z). It is constructed as follows.

:

:

:

lim
s→0

: HBM
∙ (Z(S×)) → HBM

∙−d (Zo).

HBM
∙ (Z(B>0)) HBM

∙−d (F) ⊗ HBM
d (B>0) HBM

∙−d (F) ⊗ HBM
1 (R>0) HBM

∙−d+1(Z(R>0)).
∼

−→
∼

−→
∼

−→

lim
s→0

: HBM
∙ (Z(S×)) → HBM

∙ (Z(B>0)) HBM
∙−d+1(Z(R>0)) → HBM

∙−d (Zo).
∼

−→

Lemma 40.

Specialization is compatible with restriction:

S

lim
s→0

=
S1

lim
s→0

∘ε∗.

∩ ∘ lim
s→0

= lim
s→0

∘∩.



Choose a closed embedding i : Z ↪ M into a C∞-manifold M such that Z is a homotopy
retract of M. Then the restriction map induced by i gives an isomorphism i∗ : H ∙(M) H ∙(Z).
We also have the cap product ∩ : H i(M) × H j(M,M ∖ Z) → H i+j(M,M ∖ Z). Taking the
Poincaré dual of the last two terms yields the cohomology action map, sometimes denoted by
∪ product,

One can check that this does not depend on the choice of i; this will also become clear in
chapter 8 using the sheaf-theoretic definition of Borel-Moore homology.

We also have compatibility between the cohomology action map and the intersection pairing.
Let Z,Z ′ be closed subsets in M. For a ∈ H ∙(Z), write a|Z∩Z ′  for the natural restriction to
H ∙(Z ∩ Z ′) induced by Z ∩ Z ′ ↪ Z. Let c ∈ HBM

∙ (Z) and c′ ∈ HBM
∙ (Z ′). Then

Thom isomorphism

Let π : V → X be a locally-trivial oriented C∞-vector bundle of rank r. Then the Euler class
e(V ) ∈ H r(V ). If V  is a complex vector bundle then e(V ) is just the top Chern class of V .

Proof.
The basic idea is that we want an open tubular neighborhood U ⊃ N  in M diffeomorphic to
TNM. Then using some excision, we may replace (M,N) with (TNM,N). Then Proposition 40
(Thom isomorphism) part (2) yields the result.

∼
−→

∪ : H i(Z) ⊗ HBM
k (Z) → HBM

k−i (Z), a ⊗ c ↦ a ⋅ c.

(a ⋅ c) ∩ c′ = a|Z∩Z ′ ⋅ (c ∩ c′) ∈ HBM
∙ (Z ∩ Z ′).

Proposition 41 (Thom isomorphism).

Let i : X ↪ V  be the zero section.

1. The pullback maps i∗ and π∗ induce mutually inverse isomorphisms of Borel-Moore
homology:

HBM
∙ (X) HBM

∙+r (V ).
∼
⇆
∼

2. For any c ∈ HBM
∙ (X), we have i∗i∗(c) = e(V ) ⋅ c.

Corollary 42.

Let N  be an oriented closed submanifold of an oriented C∞-manifold M , of (real) codimension d.
Let i : N ↪ M  be the inclusion. Then for all c ∈ HBM

∙ (N) we have i∗i∗(c) = e(TNM) ⋅ c.



□

□

We can also relate subbundles.

Proof.
Proposition 40 (Thom isomorphism) part (1) implies that the statement is equivalent to applying
j∗ to it, as an equality in HBM

∙ (W). Then Proposition 40 (Thom isomorphism) part (2) implies
that

while the RHS is

since j∗[V ] = [W ].

Access intersection formula

Let Z1,Z2 be closed oriented submanifolds of an oriented C∞-manifold M. Our goal is to
compute the intersection pairing [Z1] ∩ [Z2] in the most general case.

2.7 Convolution in Borel-Moore Homology

Corollary 43.

Let p : V → Z be an oriented vector bundle and W ⊂ V  an oriented subbundle, with inclusion map
j : W ↪ V . Then

j∗[W ] = p∗ e(V /W) ⋅ [V ] ∈ HBM
∙ (V ).

j∗j∗[W ] = p∗ e(V /W) ⋅ [W ],

j∗(p∗ e(V /W) ⋅ [V ]) = p∗ e(V /W) ⋅ j∗[V ] = p∗ e(V /W) ⋅ [W ],

Proposition 44.

Assume that Z = Z1 ∩ Z2 is “clean” in the sense that for all z ∈ Z,

For example, this holds for any transverse intersection. Define the vector bundle on z

Then

where [Zi] ∈ HBM
∙ (Zi) and e(T1,2) ∈ H ∙(Z).

:

TzZ1 ∩ TzZ2 = TzZ.

T1,2 = TzM/(TzZ1 + TzZ2).:

[Z1] ∩ [Z2] = e(T1,2) ⋅ [Z] ∈ HBM
∙ (Z),



Let M1,M2,M3 be connected, oriented, C∞-manifolds. Let

be closed subsets. Define

So we can think of Zi,j as multivalued maps Mi → Mj, and thus Z1,2 ∘ Z2,3 can be thought of as
the composition.

Let pi,j : M1 × M2 × M3 → Mi × Mj be the projection maps. Assume that

is proper. Then Z1,2 ∘ Z2,3 = im(p1,3) defined above (restricted to the domain above). This is
closed.

Note that c1,2 ⊠ [M3] = p∗
1,2c1,2 and [M1] ⊠ c2,3 = p∗

2,3c2,3. Also note that the direct image is well-
defined since p1,3 was assumed to be proper, so the support is indeed contained in a
reasonable set.

Z1,2 ⊂ M1 × M2, Z2,3 ⊂ M2 × M3

Z1,2 ∘ Z2,3 = {(m1,m3) ∈ M1 × M3 ∣ ∃m2 ∈ M2 s.t. (m1,m2) ∈ Z1,2 & (m2,m3) ∈ Z2,3}.:

Example 45.

Let f : M1 → M2 and g : M2 → M3 be smooth maps. Then

Graph(f) ∘ Graph(g) = Graph(g ∘ f).

p1,3 : p−1
1,2(Z1,2) ∩ p−1

2,3(Z2,3) = Z1,2 ×M2 Z2,3 → M1 × M3

Definition 46 (convolution in Borel-Moore homology).

Let d = dimR M2. We define the convolution in Borel-Moore homology

denoted

by translating the set-theoretic composition into composition of cycles. Specifically,

:

HBM
i (Z1,2) × Hj(Z2,3) → HBM

i+j−d(Z1,2 ∘ Z2,3)

(c1,2, c2,3) ↦ c1,2 ∗ c2,3,

c1,2 ∗ c2,3 = (p1,3)∗ ((c1,2 ⊠ [M3]) ∩ ([M1] ⊠ c2,3)) ∈ HBM
∙ (Z1,2 ∘ Z2,3).



Convolution is associative and compatible with lots of things, such as Künneth, specialization,
base change, etc.


