Let (M, ω) be a symplectic manifold. Recall that we have the exact sequence

$$0 o \mathbb{C} o \mathcal{O}(M) o \mathfrak{X}_{symp}(M) o H^1(M,\mathbb{R}) o 0.$$

the first three terms are exact from our theory. Now note that $\xi \in \mathfrak{X}(M)$ is symplectic if and only if

$$\mathcal{L}_{\xi}\omega=0 \iff d(i_{\xi}\omega)=0 \iff i_{\xi}\omega ext{ is closed}.$$

Moreover, $i_{\xi}\omega = -df$ is exact if and only if it is in the image of $\mathcal{O}(M) \to \mathfrak{X}_{symp}(M)$. Prove allow us to complete the exact sequence.

Definition. Let *G* be a lie group acting on *M*. We say this action is **symplectic** if for all $g \in G$ we have $g^*\omega = \omega$. In other words, $\omega(g. x, g. y) = \omega(x, y)$.

Lemma. If *G* is a symplectic action on (M, ω) , then the infinitesimal *G*-action gives a Lie algebra homomorphism

 $\mathfrak{g} := \operatorname{Lie}(G) \longrightarrow \operatorname{symplectic vector fields on } M.$

Proof. We have that

$$L_X \omega = \lim_{t o 0} rac{d}{dt} \mathrm{exp}(tX)^* \omega = \lim_{t o 0} rac{d}{dt} \omega = 0.$$

Definition. A symplectic *G*-action is *Hamiltonian* if there is a Lie algebra homomorphisms $H : \mathfrak{g} \to \mathcal{O}(M)$, denoted $x \mapsto H_x$ which makes the triangle commute:

(BIG - TRIANGLE)

We can view $H:\mathfrak{g}\times M\to\mathbb{C}$. This allows us to define the *moment map* $\mu:M\to\mathfrak{g}^*$ by

$$\mu(m)(?):=H_?(m).$$

Lemma.

- 1. For any $x \in \mathfrak{g}$, we have $H_x = \mu^* x$.
- 2. The map $\mu^* : \mathbb{C}[\mathfrak{g}^*] \to \mathcal{O}(M)$ commutes with the Poisson structure.
- 3. If G is connected, the μ is G-equivariant relative to coadjoint action on Le^{*} .

Proof.

In (1.) we are viewing $x \in \mathfrak{g}$ as an element of $(\mathfrak{g}^*)^*$ in the natural way. Thus, we have

$$\mu^* x(m) = x(\mu(m)) = \mu(m)(x) = H_x(m).$$

For (2.), it suffices to prove on linear functions. Thus, for $x, y \in \mathfrak{g}$ we have that

$$\{\mu^*x,\mu^*y\}=\{H_x,H_y\}=H_{[x,y]}=\mu^*[x,y]=\mu^*\{x,y\}.$$

where $[x, y] = \{x, y\}$ in the last equality because of how the Poisson algebra structure is defined on $\mathbb{C}[\mathfrak{g}^*]$ (recall the last section) and the second equality is from the Lie algebra homomorphism structure of the Hamiltonian.

For (3.), since G is connected, it suffices to prove the infinitesimal equivariance.

Let
$$m\in M$$
 and $\lambda:=\mu(m)$ where $\mu:M o \mathfrak{g}^*.$ Let $\mu_*:T_mM o \mathfrak{g}^*.$ We want to prove that $\mu_*(\xi_x)=\mathrm{ad}^*x(\lambda)$

for all $x \in \mathfrak{g} = (\mathfrak{g}^*)^*$ and $m \in M$ where ξ_x is the vector field corresponding to x. To prove that this equation holds, we check that both sides have the same values after substituting $y \in \mathfrak{g}$ where we consider y a function on \mathfrak{g}^* . For the left hand side, we have

$$\langle y, \mu_*(\xi_x)
angle = \mu_*(\xi_x)(y) = \xi_x(y \circ \mu) = \xi_x(\mu^*y) = \xi_{H_x}(\mu^*y) = \{H_x, \mu^*y\} = \{\mu^*x, \mu^*y\}$$

For the right hand side, we have

$$\langle y, \mathrm{ad}^*x(\lambda)
angle = \langle [x,y],\lambda
angle = \lambda([x,y]) = \mu(m)([x,y]) = H_{[x,y]}(m) = \{H_x,H_y\}(m) = \{\mu^*x,\mu^*y\}(m).$$

This suffices for the proof. \Box

Example. Let $M = \mathbb{C}^2$ and $G = SL_2(\mathbb{C})$. The lie algebra is $\mathfrak{sl}_2(\mathbb{C})$ which has basis

$$e = egin{bmatrix} 0 & 1 \ 0 & 0 \end{bmatrix}, f = egin{bmatrix} 0 & 0 \ 1 & 0 \end{bmatrix}, h = egin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix}.$$

The vector fields corresponding to e, f, h are

$$e\mapsto qrac{\partial}{\partial p}, \quad f\mapsto prac{\partial}{\partial q}, \quad h\mapsto prac{\partial}{\partial p}-qrac{\partial}{\partial q}$$

Indeed, we show the computation for the first one:

$$rac{d}{dt}ert_{t=0}\exp\left(tegin{bmatrix} 0&1\0&0\end{bmatrix}
ight)egin{bmatrix}x\y\end{bmatrix}=egin{bmatrix}y\0\end{bmatrix}$$

After getting the vector fields, you can solve the relevant differential equations to get a valid Hamiltonian function

$$e\mapsto q^2/2,\quad f\mapsto -p^2/2,\quad h\mapsto pq.$$

Identifying $\mathfrak{sl}_2(\mathbb{C})^*$ and $\mathfrak{sl}_2(\mathbb{C})$ via the non-degenerate bilinear form $(A, B) \mapsto \operatorname{Tr}(A \cdot B)$, then we have the moment map $\mu : \mathbb{C}^2 \to \mathfrak{sl}_2(\mathbb{C})$ defined by

$$\mu(p,q)=rac{1}{2}egin{pmatrix}pq&-p^2\q^2&-pq\end{pmatrix},$$

Note that the image is nilpotent. In Chapter 3, we see that this is a 2-fold covering of the nilpotent cone in $\mathfrak{sl}_2(\mathbb{C})$ ramified at the origin.

Example. Let $M = T^*X$ and let G act on X. Recall that we have Lie algebra homomorphims

$$\mathfrak{g}
ightarrow \mathfrak{X}(X)
ightarrow \mathfrak{X}(T^*X)$$

defined by $x \mapsto u_x \mapsto \tilde{u}_x$. In this case, we have $\pi_* \tilde{u} = u$. Here is a result from symplectic geometry:

Lemma. Let $f: M \to M$ be a diffeomorphism. Then $f^*: T^*M \to T^*M$ is a symplectomorphism.

In particular, if G acts on X, then G acts on T^*M via symplectomorphisms. Moreover, recall that we proved yesterday that

$$\widetilde{u} = \xi_{\lambda(\widetilde{u})}.$$

This immediately gives the following result:

Proposition. For any *G*-manifold *X*, the *G* action on T^*X is Hamiltonian with Hamiltonian

$$x\mapsto H_x=\lambda(\widetilde{u}_x)\in \mathcal{O}(T^*X).$$

Lemma. There is a natural G-equivariant isomorphism

$$T^*(G/P)\simeq G imes_P\,\mathfrak{p}^\perp.$$

Proof Sketch.

Let $\mathfrak{g}_{G/P} = G/P \times \mathfrak{g}$ be a trivial bundle. Consider the canonical vector bundle morphism

$$\mathfrak{g}_{G/P} \to T(G/P)$$

The fiber at each $x \in G/P$ is \mathfrak{p}_x the stabilizer lie algebra. Since stabilizer groups are conjugate, the various \mathfrak{p}_x are related via the adjoint action. Thus we have

$$T(G/P) \simeq G \times_P \mathfrak{g}/\mathfrak{p}.$$

Taking the dual, we get

$$T^*(G/P)\simeq G imes_P(\mathfrak{g}/\mathfrak{p})^*=G imes_P\mathfrak{p}^\perp.$$

Proposition. Under the isomorphism $T^*(G/P) \simeq G \times_P \mathfrak{p}^{\perp}$ the moment map μ is given explicitly by

$$(g,lpha)\mapsto \operatorname{Ad}^*(g)lpha, \quad g\in G, lpha\in \mathfrak{p}^\perp.$$

Proof.

The moment map sends (g, α) to the linear function $\mu(g, \alpha) : \mathfrak{g} \to \mathbb{C}$ given by $x \mapsto H_x(g, \alpha)$, $x \in \mathfrak{g}$, where H_x is the Hamiltonian for x. Recall that $H_x = \lambda(\tilde{x})$ where \tilde{x} is a lift of x. Also recall that (g, α) corresponds to $\mathrm{Ad}^*(g)\alpha$ as an element of $T^*(G/P)$. Then we have

$$\lambda(\widetilde{x})(g,lpha)=\mathrm{Ad}^*(g)lpha(\pi_*(\widetilde{x}))=\mathrm{Ad}^*(g)lpha(x).$$

Section 1.5. Coisotropic subvarieties

Let (M, ω) be a symplectic manifold with Poisson bracket $\{\cdot, \cdot\}$ on $\mathcal{O}(M)$.

Recall: a subvariety $\Sigma \subseteq M$ is coisotropic if

$$(T_p\Sigma)^{\perp\omega}\subseteq T_p\Sigma.$$

Let $\mathcal{J}_{\Sigma} \subseteq \mathcal{O}(M)$ be the defining ideal of Σ .

Proposition. The subvariety Σ is coisotropic if and only if $\{\mathcal{J}_{\Sigma}, \mathcal{J}_{\Sigma}\} \subset \mathcal{J}_{\Sigma}$, that is, if and only if \mathcal{J}_{Σ} is a Lie subalgebra, not necessarily ideal.

Proof Sketch.

Suppose that $\{\mathcal{J}_{\Sigma}, \mathcal{J}_{\Sigma}\} \subset \mathcal{J}_{\Sigma}$. This holds if and only if

$$f,g\in\mathcal{J}_{\Sigma}\implies\omega(\xi_{f},\xi_{g})(m)\equiv0$$

for all $m \in \Sigma^{reg}$.

For any smooth point $m \in \Sigma^{reg}$ and $f \in \mathcal{J}_M$, $W = T_m \Sigma$, $V = T_m M$, we have that df = 0 on Wso $df \in W^{\perp}$. This implies that $\xi_f \in W^{\perp \omega}$. But since \mathcal{J}_{Σ} is the defining ideal, we know that W^{\perp} is spanned by ξ_f . Thus

$$\omega(W^{\perp \omega},W^{\perp \omega})=0.$$

This proves that $W^{\perp \omega}$ is isotropic so *W* is coisotropic. We can run this argument in reverse to get the if and only if. \Box

Let $\Sigma \subset M$ be a smooth coisotropic subvariety and $m \in \Sigma$. Then

- 1. The restriction of ω to $T_m \Sigma$ is degenerate (dimension counting argument)
- 2. $\operatorname{Rad}(\omega|_{T_m\Sigma}) = (T_m\Sigma)^{\perp\omega} \subset T_m\Sigma.$

If we put all of these radicals of ω at each fiber of $T_m\Sigma$, we get a vector subbundle

$$(T\Sigma)^{\perp\omega} \subset T\Sigma.$$

This vector bundle is actually integrable. That is,

Proposition. There exists a foliation on Σ such that for any $m \in \Sigma$, the space $(T_m \Sigma)^{\perp \omega}$ is equal to the tangent space at m to the leaf of the foliation.

Explanation: Thus, we can partition Σ into "leaves" (submanifolds) such that the tangent spaces in each submanifold corresponds to the tangent space $(T_m \Sigma)^{\perp \omega}$.

This directly follows from

Theorem. (Frobenius Integrability Theorem)

Let $E \subset T\Sigma$ be a vector subbundle of the tangent bundle on a manifold Σ . Then *E* is integrable if and only if sections of *E* form a Lie subalgebra.

So, in our case, since $\{\xi_f, f|_{\Sigma} = \text{constant}\}$ spans $(T_m \Sigma)^{\perp \omega}$, we want to prove that when $f|_{\Sigma} = \text{constant}$ and $g|_{\Sigma} = \text{constant}$, then we have

$$[\xi_f,\xi_g]=\xi_{\{f,g\}}\in (T\Sigma)^{\perp\omega}$$

since $\{f,g\}|_{\Sigma} = constant$ from the fact that the defining ideal is a subalgebra. \Box

Example. Let *M* be symplectic and let $f \in \mathcal{O}(M)$. Let Σ be the zero variety of *f*. Suppose that df does not vanish on Σ . Thus Σ is a codimension 1 subvariety. It is coisotropic since (f) is a Lie subalgebra. The foliation which gives $(T\Sigma)^{\perp}$ is the foliation given by ξ_f and the integral curves that it traces.

Theorem. Let *A* be a solvable algebraic group with a Hamiltonian action on a symplectic algebraic variety *M*. Let $\mathfrak{a} = Lie(A)$ and let μ be the moment map

 $\mu:M\to\mathfrak{a}^*$

Then for any coadjoint orbit $\mathbb{O} \subset \mathfrak{a}^*$ the set $\mu^{-1}(\mathbb{O})$ is either empty or is a coisotropic subvariety of M.

Proof Sketch.

Lemma. Let (V, ω) be a symplectic vector space. A vector subspace $\Sigma \subset V$ is coisotropic if and only if it contains a lagrangian subspace $\Lambda \subset \Sigma$.

Proof. It $\Lambda \subset \Sigma$ is lagrangian, then

$$\Sigma \supset \Lambda = \Lambda^{\perp \omega} \supset \Sigma^{\perp \omega}.$$

Conversely, if Σ is coisotropic. Then $\Sigma \supset \Sigma^{\perp \omega}$ and $\Sigma / \Sigma^{\perp \omega}$ is again symplectic. We can pick any lagrangian $\overline{\Lambda} \subseteq \Sigma / \Sigma^{\perp \omega}$. Its pullback to Σ will be a lagrangian subspace. \Box

Lemma. (Technical, so we omit the proof)

For $N \subset M$ irreducible subvariety (M is smooth) and $f \in \mathcal{O}(N)$ a nonconstant regular function. For any $c \in \mathbb{C}$ we define $D_c = f^{-1}(c)$ and assume D_0 is nonempty. Then there is a Zariski-open dense subset $D_0^{gen} \subset D_0$ such that

 D_0^{gen} is contained in the smooth locus of D_0 and for any point $x \in D_0^{gen}$, there is a sequence of complex numbers $c_1, c_2, \ldots \to 0$ and a sequence of points D_{c_i} such that

- 1. $x_i \rightarrow x$ (in Hausdorff topology) and x_i is a smooth point in D_{c_i} .
- 2. $T_{x_i}D_{c_i} \rightarrow T_xD_0$ where convergence takes place in the space of Grassmanians (dim N-1) planes in TM.
- 3. The numbers c_1, c_2, \ldots can be picked generically.

Let *A* be our solvable Lie group with lie algebra \mathfrak{a} . Then we have a codimension 1 normal subgroup $A_1 \subset A$ with lie algebra $\mathfrak{a}_1 \subset \mathfrak{a}$.

(Why is this true? Exercise: Prove that a solvable lie algebra has a codimension 1 ideal)

Claim. Consider the map

$$\mathbb{O} \hookrightarrow \mathfrak{a}^* \xrightarrow{p} \mathfrak{a}_1^*$$

where p is the pullback of the inclusion $a_1 \hookrightarrow a$. Then, I claim that we have one of the two alternatives:

1. dim $p(\mathbb{O}) = \dim \mathbb{O}$ in which case $p(\mathbb{O})$ is a single A_1 -orbit.

2. dim $p(\mathbb{O}) < \dim \mathbb{O}$. In this case, the dimension of any A_1 -orbit in $p(\mathbb{O})$ equals dim $\mathbb{O} - 2$.

Note that since A_1 is a normal subgroup, we have a natural A action on \mathfrak{a}_1 and hence \mathfrak{a}_1^* . It is not difficult to see that $p : \mathfrak{a}^* \to \mathfrak{a}_1^*$ is A-equivariant. Thus $p(\mathbb{O})$ is a A-orbit in \mathfrak{a}_1^* .

Let $o \in p(\mathbb{O})$. Since dim $\mathfrak{a}_1 = \dim \mathfrak{a} - 1$, if we consider the tangent vectors induced by \mathfrak{a}_1 at o via the A_1 action and the tangent vectors induced by \mathfrak{a} at o via the A action, we must have

$$\dim(\mathfrak{a}_1 \cdot o) \geq \dim(\mathfrak{a} \cdot o) - 1.$$

(The tangent vectors from \mathfrak{a}_1 is missing at most one dimension) Thus, we have

$$\dim(A_1 \cdot o) \geq \dim(A \cdot o) - 1 = \dim p(\mathbb{O}) - 1$$

where the equality follows since $p(\mathbb{O})$ is an *A*-orbit. When dim $p(\mathbb{O}) = \dim \mathbb{O}$ we have

$$\dim \mathbb{O} \geq \dim(A_1 \cdot o) \geq \dim \mathbb{O} - 1.$$

All A_1 orbits in $p(\mathbb{O})$ are symplectic manifolds, so $A_1 \cdot o$ has even dimension. Since \mathbb{O} is a coadjoint orbit of A, it is also symplectic and has even dimension. This implies that dimensions

of A_1 orbits in $p(\mathbb{O})$ have dimension $\dim \mathbb{O} = \dim p(\mathbb{O})$, which means that $p(\mathbb{O})$ consists of only one A_1 orbit.

In the case where $\dim p(\mathbb{O}) < \dim \mathbb{O}$, we must have $\dim p(\mathbb{O}) = \dim \mathbb{O} - 1$. But then

 $\dim \mathbb{O} - 1 = \dim p(\mathbb{O}) \geq \dim(A_1 \cdot o) \geq \dim(A \cdot o) - 1 = \dim p(\mathbb{O}) - 1.$

Since dimension of $A_1 \cdot o$ must be even, we have that it must be $\dim \mathbb{O} - 2$. \Box

Proof of Theorem.

Recall that $\mathbb{O} \subset \mathfrak{a}^*$ is a coadjoint orbit and we want to show that $\mu^{-1}(\mathbb{O})$ is a coisotropic subvariety.

We induct on dim *A*. Let $A_1 \subset A$ be codimension 1 normal subgroup. Suppose that dim $p(\mathbb{O}) = \dim \mathbb{O} - 1$. Then \mathbb{O} is an open part of $p^{-1}(p(\mathbb{O}))$ (look at the co-dimension and it is preserved under pre-image). Thus, we want to prove that

$$\mu^{-1}(p^{-1}p(\mathbb{O})) = \mu_1^{-1}(p(\mathbb{O}))$$

is coisotropic. But this follows from induction since this is a union of coisotropic subvarieties the pre-images of coadjoint orbits in a_1^* which are coisotropic from the induction.

Now suppose that $\dim p(\mathbb{O}) = \dim \mathbb{O}$. From our earlier argument, we know that $N = \mu^{-1}(p^{-1}p(\mathbb{O}))$ is coisotropic. We know that \mathbb{O} is codimension 1 in $p^{-1}p(\mathbb{O})$.

We argue locally: Let *P* be a local equation of \mathbb{O} , i.e., a function on $p^{-1}p(\mathbb{O})$ such that $P \neq 0$ and $P|_{\mathbb{O}} = 0$. This implies that

$$\mu^{-1}(\mathbb{O})=N\cap\{\mu^*P=0\}.$$

Let $f = \mu^* P$. Since we are working locally, we can assume that N is irreducible and f does not vanish on N. Let

$$\Sigma_c := N \cap \{f = c\}$$

Lemma. For generic $c \in \mathbb{C}$, Σ_c is coisotropic.

Our Goal: Show Σ_0 is coisotropic. From the Lemma before, we can find $x_i \rightarrow x \in \Sigma_0$ such that the lemma holds. Then

$$T_{x_i}\Sigma_{c_i} o T_{x_0}\Sigma_0.$$

From the lemma, there are lagrangian subspaces $\Lambda_i \subset T_{x_i}\Sigma_{c_i}$. We can pick a subsequence i_k such that $\Lambda_{i_k} \to \Lambda \subset T_{x_0}\Sigma_0$ (Grassmanians are compact). Then Λ is isotropic since all Λ_{i_k} are

lagrangian. By looking at dimension, this actually implies Λ is lagrangian. This completes the proof.