Let (M, w) be a symplectic manifold. Recall that we have the exact sequence
0— C— O(M) = Xgymp(M) — HY(M,R) — 0.

the first three terms are exact from our theory. Now note that £ € X(M) is symplectic if and only
if
Liw=0 <= d(iqw) =0 <= iewis closed.

Moreover, icw = —df is exact if and only if it is in the image of O(M) — X symp(M). Prove allow
us to complete the exact sequence.

Definition. Let G be a lie group acting on M. We say this action is symplectic if forall g € G
we have g*w = w. In other words, w(g. z, g. y) = w(z,y).

Lemma. If G is a symplectic action on (M, w), then the infinitesimal G-action gives a Lie algebra
homomorphism

g := Lie(G) — symplectic vector fields on M.

Proof. We have that

d d
Lyw =lim — X)*w=lim —w = 0.
X tl—I>I(} dt exp(tX)"w tl—r>% w=0

4

Definition. A symplectic G-action is Hamiltonian if there is a Lie algebra homomorphisms
H:g— O(M), denoted z — H, which makes the triangle commute:

(BIG — TRIANGLE)
We can view H : g x M — C. This allows us to define the moment map u : M — g* by
p(m)(?) := Hz(m).
Lemma.
Forany z € g, we have H, = u*=x.

The map p* : Clg*] — O(M) commutes with the Poisson structure.
If G is connected, the u is G-equivariant relative to coadjoint action on $\mathfrak{g}"*.

Proof.
In (1.) we are viewing z € g as an element of (g*)* in the natural way. Thus, we have



For (2.), it suffices to prove on linear functions. Thus, for z,y € g we have that
{pw'z, Wy} = {Hsy Hy} = Hypy = p'[z, 9] = p*{z,y}.

where [z, y] = {z,y} in the last equality because of how the Poisson algebra structure is defined
on C[g*] (recall the last section) and the second equality is from the Lie algebra homomorphism
structure of the Hamiltonian.

For (3.), since G is connected, it suffices to prove the infinitesimal equivariance.

Letm € M and X := u(m) where p: M — g*. Let p. : T,, M — g*. We want to prove that
ps(§2) = ad’z(X)

forallz € g = (g*)* and m € M where &, is the vector field corresponding to x. To prove that
this equation holds, we check that both sides have the same values after substituting y € g
where we consider y a function on g*. For the left hand side, we have

(Y, us(€z)) = pa(€2)(y) = Ex(yo p) = E(1™y) = Em, (1Y) = {Hz, 'y} = {02, "y}
For the right hand side, we have
(y,ad"z(X)) = ([z, 4], A) = A([z,y]) = p(m)([2,y]) = Hpy)(m) = {Hy, Hy}(m) = {p"z, p"y}(m).

This suffices for the proof. [J

Example. Let M = C2? and G = SL,(C). The lie algebra is sl,(C) which has basis

[ a-p ol )

The vector fields corresponding to e, f, h are

0 hwpi—qi.

e 0 f—

Op

Indeed, we show the computation for the first one:

woee (o of) )= 1

— |+—0 €X = .

at'=“P\"lo o]/ |yl " lo

After getting the vector fields, you can solve the relevant differential equations to get a valid
Hamiltonian function

err q*/2, frr —p*/2, hpg.

Identifying s(>(C)* and sl (C) via the non-degenerate bilinear form (A, B) — Tr(A - B), then we
have the moment map p : C* — sly(C) defined by



1 (pg —p?
ppa) =5, :
¢ —pq

Note that the image is nilpotent. In Chapter 3, we see that this is a 2-fold covering of the
nilpotent cone in sly(C) ramified at the origin.

Example. Let M = T*X and let G act on X. Recall that we have Lie algebra homomorphims
g— X(X) = X(T*X)

defined by = — u, — . In this case, we have w4 = u. Here is a result from symplectic
geometry:

Lemma. Let f : M — M be a diffeomorphism. Then f* : T*M — T*M is a symplectomorphism.

In particular, if G acts on X, then G acts on T* M via symplectomorphisms. Moreover, recall that
we proved yesterday that

= E\@)-
This immediately gives the following result:
Proposition. For any G-manifold X, the G action on T* X is Hamiltonian with Hamiltonian
z— Hy = \Nug) € O(T*X).
Lemma. There is a natural G-equivariant isomorphism
T*(G/P) ~ G xpp".
Proof Sketch.
Let gq/p = G/P x g be a trivial bundle. Consider the canonical vector bundle morphism
gq/p — T(G/P)

The fiber at each z € G/P is p, the stabilizer lie algebra. Since stabilizer groups are conjugate,
the various p, are related via the adjoint action. Thus we have

T(G/P)~ G xpg/p.
Taking the dual, we get
T*(G/P) ~G xp (g/p)* =G xpp*.

Proposition. Under the isomorphism T*(G/P) ~ G x p p* the moment map  is given explicitly
by

(g,a) — Ad*(g)a, g€ G,acp’.



Proof.

The moment map sends (g, ) to the linear function u(g, @) : g — C given by z — H,(g, a),
z € g, where H, is the Hamiltonian for z. Recall that H, = A\(Z) where 7 is a lift of z. Also recall
that (g, @) corresponds to Ad*(g)a as an element of T*(G/P). Then we have

A(Z)(g9,a) = Ad*(g)a(m,(Z)) = Ad’(9)(z).

U
Section 1.5. Coisotropic subvarieties
Let (M, w) be a symplectic manifold with Poisson bracket {-, -} on O(M).
Recall: a subvariety ¥ C M is coisotropic if
(T,%)' C T,%.
Let Jx C O(M) be the defining ideal of X.

Proposition. The subvariety X is coisotropic if and only if {Js, Js} C Js, that s, if and only if
Jx is a Lie subalgebra, not necessarily ideal.

Proof Sketch.

Suppose that {Jx, Jx} C Jx. This holds if and only if
f,9€ Tz = w(és,&)(m) =0

forall m € ¥,

For any smooth pointm € ¥™9and f € Jy, W =T,,%, V =T,,M, we have thatdf =0on W
so df € W+. This implies that £ € W“. But since Jx is the defining ideal, we know that W+ is
spanned by ;. Thus

w(WH, W) = 0.

This proves that W1* is isotropic so W is coisotropic. We can run this argument in reverse to
get the if and only if. O

Let ¥ C M be a smooth coisotropic subvariety and m € X. Then

The restriction of w to T7,,X is degenerate (dimension counting argument)
Rad(w|ng) = (TmZ)Lw C TmE

If we put all of these radicals of w at each fiber of T,,X, we get a vector subbundle

(T)™ C Tx.



This vector bundle is actually integrable. That is,

Proposition. There exists a foliation on ¥ such that for any m € ¥, the space (T},%)** is equal
to the tangent space at m to the leaf of the foliation.

Explanation: Thus, we can partition X into "leaves" (submanifolds) such that the tangent spaces
in each submanifold corresponds to the tangent space (7,,,%)“.

This directly follows from

Theorem. (Frobenius Integrability Theorem)
Let E C TXY be a vector subbundle of the tangent bundle on a manifold X. Then E is integrable
if and only if sections of F form a Lie subalgebra.

So, in our case, since {{7, f|sx = constant} spans (T,,X), we want to prove that when
fls = constant and g|y, = constant, then we have

[£5,€5] = &qp.g) € (TD)

since {f, g}|s = constant from the fact that the defining ideal is a subalgebra. [

Example. Let M be symplectic and let f € O(M). Let ¥ be the zero variety of f. Suppose that
df does not vanish on X. Thus X is a codimension 1 subvariety. It is coisotropic since (f) is a
Lie subalgebra. The foliation which gives (TX)* is the foliation given by ¢ and the integral
curves that it traces.

Theorem. Let A be a solvable algebraic group with a Hamiltonian action on a symplectic
algebraic variety M. Let a = Lie(A) and let i be the moment map

w:M —a*

Then for any coadjoint orbit O C a* the set u~1(0) is either empty or is a coisotropic subvariety
of M.

Proof Sketch.

Lemma. Let (V,w) be a symplectic vector space. A vector subspace ¥ C V is coisotropic if and
only if it contains a lagrangian subspace A C X.

Proof. It A C ¥ is lagrangian, then
LOA=AYD 3

Conversely, if ¥ is coisotropic. Then ¥ D £+ and ¥ /%1 is again symplectic. We can pick any
lagrangian A C ©/%¢. Its pullback to X will be a lagrangian subspace. [J

Lemma. (Technical, so we omit the proof)



For N C M irreducible subvariety (M is smooth) and f € O(N) a nonconstant regular function.
For any c € C we define D. = f~!(c) and assume D, is nonempty. Then there is a Zariski-open
dense subset DI** C D, such that

D™ is contained in the smooth locus of Dy and for any point z € D™, there is a sequence of
complex numbers cy, c2, ... — 0 and a sequence of points D., such that

z; — « (in Hausdorff topology) and z; is a smooth pointin D...

T.,D., — Ty Dy where convergence takes place in the space of Grassmanians (dim N — 1)
planes in TM.

The numbers ¢y, ca2, ... can be picked generically.

Let A be our solvable Lie group with lie algebra a. Then we have a codimension 1 normal
subgroup A; C A with lie algebra a; C a.

(Why is this true? Exercise: Prove that a solvable lie algebra has a codimension 1 ideal)
Claim. Consider the map
0O—a L at

where p is the pullback of the inclusion a; < a. Then, | claim that we have one of the two
alternatives:

dim p(0) = dim O in which case p(0) is a single A;-orbit.
dim p(0) < dim Q. In this case, the dimension of any A;-orbit in p(0) equals dim O — 2.

Note that since A; is a normal subgroup, we have a natural A action on a; and hence aj. Itis
not difficult to see that p : a* — a} is A-equivariant. Thus p(Q) is a A-orbit in aj.

Let o € p(0). Since dim a; = dim a — 1, if we consider the tangent vectors induced by a; at o via
the A; action and the tangent vectors induced by a at o via the A action, we must have

dim(a; - 0) > dim(a - o) — 1.

(The tangent vectors from a; is missing at most one dimension)
Thus, we have

dim(A; - 0) > dim(A-0) — 1 =dimp(0) — 1
where the equality follows since p(QO) is an A-orbit. When dim p(0) = dim O we have
dim QO > dim(A4; - 0) > dim O — 1.

All A; orbits in p(Q) are symplectic manifolds, so A; - o0 has even dimension. Since O is a
coadjoint orbit of A, it is also symplectic and has even dimension. This implies that dimensions



of A; orbits in p(0) have dimension dim O = dim p(Q), which means that p(Q) consists of only
one A; orbit.

In the case where dim p(0) < dim O, we must have dim p(0) = dim O — 1. But then
dimO — 1 = dimp(0) > dim(A4; - 0) > dim(A4 - 0) — 1 = dimp(0) — 1.
Since dimension of A; - o must be even, we have that it must be dim O — 2. O

Proof of Theorem.

Recall that O C a* is a coadjoint orbit and we want to show that 1 ~1(0) is a coisotropic
subvariety.

We induct on dim A. Let A; C A be codimension 1 normal subgroup. Suppose that
dim p(0Q) = dim O — 1. Then Q is an open part of p~!(p(Q)) (look at the co-dimension and it is
preserved under pre-image). Thus, we want to prove that

p(p'p(0)) = prt(p(0))

is coisotropic. But this follows from induction since this is a union of coisotropic subvarieties the
pre-images of coadjoint orbits in aj which are coisotropic from the induction.

Now suppose that dim p(Q) = dim Q. From our earlier argument, we know that
N = p~Y(p~'p(0)) is coisotropic. We know that O is codimension 1 in p~1p(Q).

We argue locally: Let P be a local equation of ©, i.e., a function on p~!p(Q) such that P # 0 and
P|p = 0. This implies that

p () =Nn{u*P =0}

Let f = p*P. Since we are working locally, we can assume that N is irreducible and f does not
vanish on N. Let

Ye:=Nn{f=c}
Lemma. For generic c € C, X. is coisotropic.

Our Goal: Show X is coisotropic. From the Lemma before, we can find z; — = € %, such that
the lemma holds. Then

Ty Se, — Try Do

From the lemma, there are lagrangian subspaces A; C T,.3.,. We can pick a subsequence i
such that A;, — A C T}, 3, (Grassmanians are compact). Then A is isotropic since all A;, are



lagrangian. By looking at dimension, this actually implies A is lagrangian. This completes the
proof.



