
Let (M,ω) be a symplectic manifold. Recall that we have the exact sequence

0 → C → O(M) → Xsymp(M) → H 1(M,R) → 0.

the first three terms are exact from our theory. Now note that ξ ∈ X(M) is symplectic if and only
if

Lξω = 0 ⟺ d(iξω) = 0 ⟺ iξω is closed.

Moreover, iξω = −df is exact if and only if it is in the image of O(M) → Xsymp(M). Prove allow
us to complete the exact sequence.

Definition. Let G be a lie group acting on M. We say this action is symplectic if for all g ∈ G

we have g∗ω = ω. In other words, ω(g.x, g. y) = ω(x, y).

Lemma. If G is a symplectic action on (M,ω), then the infinitesimal G-action gives a Lie algebra
homomorphism

g := Lie(G)⟶ symplectic vector fields on M.

Proof. We have that

LXω = lim
t→0

d

dt
exp(tX)∗ω = lim

t→0

d

dt
ω = 0.

□

Definition. A symplectic G-action is Hamiltonian if there is a Lie algebra homomorphisms
H : g → O(M), denoted x ↦ Hx which makes the triangle commute:

(BIG− TRIANGLE)

We can view H : g ×M → C. This allows us to define the moment map μ : M → g∗ by

μ(m)(?) := H?(m).

Lemma.

Proof.
In (1.) we are viewing x ∈ g as an element of (g∗)∗ in the natural way. Thus, we have

μ∗x(m) = x(μ(m)) = μ(m)(x) = Hx(m).

1. For any x ∈ g, we have Hx = μ∗x.
2. The map μ∗ : C[g∗] → O(M) commutes with the Poisson structure.
3. If G is connected, the μ is G-equivariant relative to coadjoint action on $\mathfrak{g}^*.



For (2.), it suffices to prove on linear functions. Thus, for x, y ∈ g we have that

{μ∗x,μ∗y} = {Hx,Hy} = H[x,y] = μ∗[x, y] = μ∗{x, y}.

where [x, y] = {x, y} in the last equality because of how the Poisson algebra structure is defined
on C[g∗] (recall the last section) and the second equality is from the Lie algebra homomorphism
structure of the Hamiltonian.

For (3.), since G is connected, it suffices to prove the infinitesimal equivariance.

Let m ∈ M and λ := μ(m) where μ : M → g∗. Let μ∗ : TmM → g∗. We want to prove that

μ∗(ξx) = ad∗x(λ)

for all x ∈ g = (g∗)∗ and m ∈ M where ξx is the vector field corresponding to x. To prove that
this equation holds, we check that both sides have the same values after substituting y ∈ g

where we consider y a function on g∗. For the left hand side, we have

For the right hand side, we have

This suffices for the proof. □

Example. Let M = C2 and G = SL2(C). The lie algebra is sl2(C) which has basis

e = [ ], f = [ ],h = [ ].

The vector fields corresponding to e, f,h are

e ↦ q
∂

∂p
, f ↦ p

∂

∂q
, h ↦ p

∂

∂p
− q

∂

∂q
.

Indeed, we show the computation for the first one:

d

dt
|t=0 exp(t [ ])[ ] = [ ].

After getting the vector fields, you can solve the relevant differential equations to get a valid
Hamiltonian function

e ↦ q2/2, f ↦ −p2/2, h ↦ pq.

Identifying sl2(C)∗ and sl2(C) via the non-degenerate bilinear form (A,B) ↦ Tr(A ⋅B), then we
have the moment map μ : C

2 → sl2(C) defined by

⟨y,μ∗(ξx)⟩ = μ∗(ξx)(y) = ξx(y ∘ μ) = ξx(μ
∗y) = ξHx

(μ∗y) = {Hx,μ
∗y} = {μ∗x,μ∗y}.

⟨y, ad∗x(λ)⟩ = ⟨[x, y],λ⟩ = λ([x, y]) = μ(m)([x, y]) = H[x,y](m) = {Hx,Hy}(m) = {μ∗x,μ∗y}(m).
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μ(p, q) =
1

2
( ).

Note that the image is nilpotent. In Chapter 3, we see that this is a 2-fold covering of the
nilpotent cone in sl2(C) ramified at the origin.

Example. Let M = T ∗X and let G act on X. Recall that we have Lie algebra homomorphims

g → X(X) → X(T ∗X)

defined by x ↦ ux ↦ ~ux. In this case, we have π∗
~u = u. Here is a result from symplectic

geometry:

Lemma. Let f : M → M be a diffeomorphism. Then f ∗ : T ∗M → T ∗M is a symplectomorphism.

In particular, if G acts on X, then G acts on T ∗M via symplectomorphisms. Moreover, recall that
we proved yesterday that

ũ = ξλ(ũ).

This immediately gives the following result:

Proposition. For any G-manifold X, the G action on T ∗X is Hamiltonian with Hamiltonian

x ↦ Hx = λ(ũx) ∈ O(T ∗X).

Lemma. There is a natural G-equivariant isomorphism

T ∗(G/P) ≃ G×P p⊥.

Proof Sketch.

Let gG/P = G/P × g be a trivial bundle. Consider the canonical vector bundle morphism

gG/P → T (G/P)

The fiber at each x ∈ G/P  is px the stabilizer lie algebra. Since stabilizer groups are conjugate,
the various px are related via the adjoint action. Thus we have

T (G/P) ≃ G×P g/p.

Taking the dual, we get

T ∗(G/P) ≃ G×P (g/p)∗ = G×P p⊥.

Proposition. Under the isomorphism T ∗(G/P) ≃ G×P p⊥ the moment map μ is given explicitly
by

(g,α) ↦ Ad∗(g)α, g ∈ G,α ∈ p⊥.

pq −p2

q2 −pq



Proof.

The moment map sends (g,α) to the linear function μ(g,α) : g → C given by x ↦ Hx(g,α),
x ∈ g, where Hx is the Hamiltonian for x. Recall that Hx = λ(x̃) where x̃ is a lift of x. Also recall
that (g,α) corresponds to Ad∗(g)α as an element of T ∗(G/P). Then we have

λ(x̃)(g,α) = Ad∗(g)α(π∗(x̃)) = Ad∗(g)α(x).

□

Section 1.5. Coisotropic subvarieties

Let (M,ω) be a symplectic manifold with Poisson bracket {⋅, ⋅} on O(M).

Recall: a subvariety Σ ⊆ M is coisotropic if

(TpΣ)⊥ω ⊆ TpΣ.

Let JΣ ⊆ O(M) be the defining ideal of Σ.

Proposition. The subvariety Σ is coisotropic if and only if {JΣ,JΣ} ⊂ JΣ, that is, if and only if
JΣ is a Lie subalgebra, not necessarily ideal.

Proof Sketch.

Suppose that {JΣ,JΣ} ⊂ JΣ. This holds if and only if

f, g ∈ JΣ ⟹ ω(ξf , ξg)(m) ≡ 0

for all m ∈ Σreg.

For any smooth point m ∈ Σreg and f ∈ JM , W = TmΣ, V = TmM, we have that df = 0 on W
so df ∈ W ⊥. This implies that ξf ∈ W ⊥ω. But since JΣ is the defining ideal, we know that W ⊥ is
spanned by ξf . Thus

ω(W ⊥ω,W ⊥ω) = 0.

This proves that W ⊥ω is isotropic so W  is coisotropic. We can run this argument in reverse to
get the if and only if. □

Let Σ ⊂ M be a smooth coisotropic subvariety and m ∈ Σ. Then

If we put all of these radicals of ω at each fiber of TmΣ, we get a vector subbundle

(TΣ)⊥ω ⊂ TΣ.

1. The restriction of ω to TmΣ is degenerate (dimension counting argument)
2. Rad(ω|TmΣ) = (TmΣ)⊥ω ⊂ TmΣ.



This vector bundle is actually integrable. That is,

Proposition. There exists a foliation on Σ such that for any m ∈ Σ, the space (TmΣ)⊥ω is equal
to the tangent space at m to the leaf of the foliation.

Explanation: Thus, we can partition Σ into "leaves" (submanifolds) such that the tangent spaces
in each submanifold corresponds to the tangent space (TmΣ)⊥ω.

This directly follows from

Theorem. (Frobenius Integrability Theorem)
Let E ⊂ TΣ be a vector subbundle of the tangent bundle on a manifold Σ. Then E is integrable
if and only if sections of E form a Lie subalgebra.

So, in our case, since {ξf , f|Σ = constant} spans (TmΣ)⊥ω, we want to prove that when
f|Σ = constant and g|Σ = constant, then we have

[ξf , ξg] = ξ{f,g} ∈ (TΣ)⊥ω

since {f, g}|Σ = constant from the fact that the defining ideal is a subalgebra. □

Example. Let M be symplectic and let f ∈ O(M). Let Σ be the zero variety of f. Suppose that
df does not vanish on Σ. Thus Σ is a codimension 1 subvariety. It is coisotropic since (f) is a
Lie subalgebra. The foliation which gives (TΣ)⊥ is the foliation given by ξf  and the integral
curves that it traces.

Theorem. Let A be a solvable algebraic group with a Hamiltonian action on a symplectic
algebraic variety M. Let a = Lie(A) and let μ be the moment map

μ : M → a∗

Then for any coadjoint orbit O ⊂ a∗ the set μ−1(O) is either empty or is a coisotropic subvariety
of M.

Proof Sketch.

Lemma. Let (V ,ω) be a symplectic vector space. A vector subspace Σ ⊂ V  is coisotropic if and
only if it contains a lagrangian subspace Λ ⊂ Σ.

Proof. It Λ ⊂ Σ is lagrangian, then

Σ ⊃ Λ = Λ⊥ω ⊃ Σ⊥ω.

Conversely, if Σ is coisotropic. Then Σ ⊃ Σ⊥ω and Σ/Σ⊥ω is again symplectic. We can pick any
lagrangian Λ ⊆ Σ/Σ⊥ω. Its pullback to Σ will be a lagrangian subspace. □

Lemma. (Technical, so we omit the proof)

–



For N ⊂ M irreducible subvariety (M is smooth) and f ∈ O(N) a nonconstant regular function.
For any c ∈ C we define Dc = f−1(c) and assume D0 is nonempty. Then there is a Zariski-open
dense subset Dgen

0 ⊂ D0 such that

D
gen
0  is contained in the smooth locus of D0 and for any point x ∈ D

gen
0 , there is a sequence of

complex numbers c1, c2,… → 0 and a sequence of points Dci  such that

Let A be our solvable Lie group with lie algebra a. Then we have a codimension 1 normal
subgroup A1 ⊂ A with lie algebra a1 ⊂ a.

(Why is this true? Exercise: Prove that a solvable lie algebra has a codimension 1 ideal)

Claim. Consider the map

O ↪ a∗ → a∗
1

where p is the pullback of the inclusion a1 ↪ a. Then, I claim that we have one of the two
alternatives:

Note that since A1 is a normal subgroup, we have a natural A action on a1 and hence a∗
1. It is

not difficult to see that p : a∗ → a∗
1 is A-equivariant. Thus p(O) is a A-orbit in a∗

1.

Let o ∈ p(O). Since dim a1 = dim a − 1, if we consider the tangent vectors induced by a1 at o via
the A1 action and the tangent vectors induced by a at o via the A action, we must have

dim(a1 ⋅ o) ≥ dim(a ⋅ o) − 1.

(The tangent vectors from a1 is missing at most one dimension)
Thus, we have

dim(A1 ⋅ o) ≥ dim(A ⋅ o) − 1 = dim p(O) − 1

where the equality follows since p(O) is an A-orbit. When dim p(O) = dimO we have

dimO ≥ dim(A1 ⋅ o) ≥ dimO − 1.

All A1 orbits in p(O) are symplectic manifolds, so A1 ⋅ o has even dimension. Since O is a
coadjoint orbit of A, it is also symplectic and has even dimension. This implies that dimensions

1. xi → x (in Hausdorff topology) and xi is a smooth point in Dci .

2. Txi
Dci → TxD0 where convergence takes place in the space of Grassmanians (dimN − 1)

planes in TM.
3. The numbers c1, c2,… can be picked generically.

p

1. dim p(O) = dimO in which case p(O) is a single A1-orbit.

2. dim p(O) < dimO. In this case, the dimension of any A1-orbit in p(O) equals dimO − 2.



of A1 orbits in p(O) have dimension dimO = dim p(O), which means that p(O) consists of only
one A1 orbit.

In the case where dim p(O) < dimO, we must have dim p(O) = dimO − 1. But then

dimO − 1 = dim p(O) ≥ dim(A1 ⋅ o) ≥ dim(A ⋅ o) − 1 = dim p(O) − 1.

Since dimension of A1 ⋅ o must be even, we have that it must be dimO − 2. □

Proof of Theorem.

Recall that O ⊂ a∗ is a coadjoint orbit and we want to show that μ−1(O) is a coisotropic
subvariety.

We induct on dimA. Let A1 ⊂ A be codimension 1 normal subgroup. Suppose that
dim p(O) = dimO − 1. Then O is an open part of p−1(p(O)) (look at the co-dimension and it is
preserved under pre-image). Thus, we want to prove that

μ−1(p−1p(O)) = μ−1
1 (p(O))

is coisotropic. But this follows from induction since this is a union of coisotropic subvarieties the
pre-images of coadjoint orbits in a∗

1 which are coisotropic from the induction.

Now suppose that dim p(O) = dimO. From our earlier argument, we know that
N = μ−1(p−1p(O)) is coisotropic. We know that O is codimension 1 in p−1p(O).

We argue locally: Let P  be a local equation of O, i.e., a function on p−1p(O) such that P ≢ 0 and
P |O = 0. This implies that

μ−1(O) = N ∩ {μ∗P = 0}.

Let f = μ∗P . Since we are working locally, we can assume that N  is irreducible and f does not
vanish on N . Let

Σc := N ∩ {f = c}

Lemma. For generic c ∈ C, Σc is coisotropic.

Our Goal: Show Σ0 is coisotropic. From the Lemma before, we can find xi → x ∈ Σ0 such that
the lemma holds. Then

Txi
Σci → Tx0Σ0.

From the lemma, there are lagrangian subspaces Λi ⊂ Txi
Σci . We can pick a subsequence ik

such that Λik → Λ ⊂ Tx0Σ0 (Grassmanians are compact). Then Λ is isotropic since all Λik  are



lagrangian. By looking at dimension, this actually implies Λ is lagrangian. This completes the
proof.


