Section 1: Symplectic Manifolds
In this section, X will be

a C*°-manifold
complex manifold
algebraic variety over C

Definition. (Symplectic Structure)
A symplectic structure on X is a non-degenerate regular (smooth, holomorphic, algebraic) 2-
form w such that dw = 0.

Example 1. Let X = C?" with coordinates z,...,Z,,¥1,--.,Y,. Then
w=dzx, Ndy, + ...+ dz, \Ndy,

is a symplectic structure.
Now, we give more examples of symplectic structures.

Example 2. Let M be any manifold. Then the cotangent bundle has a canonical symplectic
structure.

Idea: we construct a one-form A on T*M and set w = dA.
To construct A, for every a € T*M, we want to associate a linear function A, : T,,(T*M) — 0.
Let( € T, (T*M) and w : T*M — M be the natural projection. Then, we define

Ao(§) = (a, &) € C.

Using Coordinates

Suppose yq, .. ., Yy, is a coordinate system for M and z4,...,x, the dual coordinate system.
These give a chartin T*M. Any & € T, (T*M) can be written in the form

&= Zb +Zczéyz

We have that

0

Thus, we see that

Xa(§) = (o, M) = ch( ) Y cimi(a)



(The last step is how the dual coordinates are constructed)
We can write this as

A= zdy; = dA=) dx; \dy;.
Thus dA is locally of the form in Example 1, hence non-degenerate.

Example 3. Let G be a Lie group with lie algebra g. The adjoint G-action on g gives gives rise to
a transposed co-adjoint G-action on g*

Proposition. Any co-adjoint orbit O C g* has a natural symplectic structure.

Proof.
Pick any point a € O C g*. We want a skew-symmetric form on 7,,0. We have a natural
isomorphism O ~ G/G* where G* is the isotropy group of a. So we can write

T,0 ~g/g°.
We want a skew-symmetric form on g/g*. We first define a form
we:gxg—C.

given by w,(z,y) = a([z,y]). To show that this descends to a non-degenerate form on g/g¢, it is
enough to show that g¢ is the radical of w,. Indeed, we know that g € G* if and only if

Ad*g(a) = a. Differentiating, = € g* if and only if ad*(z)(a) = 0. This right condition is
equivalent to forall y € g

0 = (ad"(z)a, y) = (@, ad(2)(y)) = (o, [2,9]) = a([2,1])-

Thus w, : g/g* x g/g* — C is non-degenerate skew-symmetric on Q. It is enough to prove that
w is closed.

Recall Cartan's formula for exterior derivative: Given &1, &2, €3 vector fields we have

dw(€1’€2a£3) = 51 : w(£27£3) + 53 : w(€1,§2) + 52 : w(&’ngl)
- (w([£1,£2]7£3) + w([€3a§1],£2) + w([€27€3]a§1))'

Any element z € g gives rise to a vector field £, on Q. In general, if G acts on M, then every
vector in g gives a vector field in M via

d
reg— &(m):= ahzo exp(zt).m

In our case, since O is homogeneous, the tangent spaces of O are spanned by the &,. Explicitly
in our case, the vector field &, is given by

€a() = %It_oAd*(eXp(tx))a.



Hence, it suffices to prove that dw(¢,, &y, €.) = 0 for all z,y, z € g. From a well-known formula of
Cartan for the exterior derivative, we have

(dw)(€1,€2,€3) = &1 - w(€2,83) + &3 - w(é1,82) + &2 - w(€s,&1)
— (w([€1,&2], €3) + w([€3, &), &2) + w([€2, €3], &1)).

It is not difficult to see that w(¢,, &) () = a([y, 2]). We also have
€xwa(€y, €2) = Eua((y, 2])
d
= —li-oAd" (exp(ta)a([y, 2)

_ %hzoa(Ad(exp(tw))[% 2))

= a(ad()[y, 2])
= o([=, [y, 2]])-

Then w is closed from the Jacobi identity.
Section 2: Poisson Algebras
In this section, A be a commutative C algebra.

Definition. A commutative algebra A endowed with an additional C-bilinear anti-symmetric
bracket {-,-} : A x A — Ais called a Poisson algebra if the following hold:

A is a Lie algebra with respect to {-, -};

Leibniz rule: {a,b-c} = {a,b} -c+b-{a,c} forall a,b,c € A.

The bracket {-,-} is called a Poisson bracket and we say that it gives a Poisson structure
to A.

Any symplectic manifold has a natural Poisson algebra.

Let (M, w) be a symplectic manifold. The non-degenerate 2-form gives a canonical
isomorphism T'M ~ T*M. Thus, we can define a C-linear map ¢ : O(M) — X(M) denoted
f — &7 such that

w(?,&5) = df
or equivalently i, w = —df. For any vector field n and any function f, we have
w(n, &) = nf.

We define a bracket on O(M) in the following way:

{f, 9} = w(&r, &) = Erg = —&4f-

In fact, the vector fields £ also preserve the symplectic structure.

Definition. A vector field £ is called symplectic if it preserves the symplectic form, i.e., L¢w = 0.



Lemma. For any f € O(M), &y is symplectic.

Proof.
From Cartan's homotopy formula, we have

L¢w = g dw + d(ig,w) = 0+ 0 = 0.
U
Proposition. The assignment f — &7 gives a bracket preserving map
(O(M),{-,-}) — (symplectic vector fields on M, [-,-])
Proof. We want to show that £y, {;] = &1, - It is @ general fact about the lie derivative that

£ w(1,82) = Le(w(&1,82)) = (Lew)(€1,€2) + w(Leba, €2) + w(&1, Lea).

Thus, when ¢ is symplectic we have

§' w(£17€2) - w([ﬁ, 51]752) + w(€1, [é.a 52])

This implies that for any vector field n, we get that

é‘f : w(€g>n) = w([£f7€g],n) + w(€g> [é‘fan])
= w([r,&g),m) — E4ng + M€ g

Since the right hand side is —&¢ng which implies that

W(U, [gf,fg]) = n{f’ g} = é-{f,g} = [é-fagg]

g

Theorem. The algebra O(M) of regular functions on a symplectic manifold M together with
{-,-} is a Poisson algebra.

Proof. To prove that the Jacobi identity, we know that
[gfa é.g]h = é{f,g}h = {{fa g}a h}
On the other hand,

[§f7 §g]h = é.fggh - fgé'fh = é.f{h’g} - gg{f’ h} = {{h’g}’ f} - {g’ {f’ h}}

This proves the Jacobi identity. The Leibniz rule is obvious since differentiation along vector
fields are derivation. [J

Section 3: Poisson Structures arising from Non-commutative Algebras

Let B be an associative filtered (non-commutative) algebra with unit. In other words, we have a
filtration



C=ByCB,CB,C..., |JBi=B
such that B, - B; C B, foralli,j > 0. Let A = grB = ,(B;/B,_1). The multiplication in B
gives a well-defined product
B;/B; 1® B;j/Bj 1 — Bij/Birj
making A into an associative algebra.

Definition. We say B is almost commutative if gr B is commutative with respect to the above
product.

Proposition. If B is almost commutative, then gr B has a natural Poisson structure.

Proof.
We first define a map

{-,-}: Bi/Bi-1 X Bj/Bj-1 — Biyj1/Bitj-2

by doing the following. Let a; € B;/B;—1 and a; € B;j/Bj_1 and let b; € B;,b; € B; be
representatives. Then, we let

{0,1, CLQ} = (bib]‘ — bjbi) (mod Bi+j,2).

We know that b;b; — b;b; € B, ;_; from almost commutativity. It is not hard to check that this is
independent of our choice of representative. We leave it as an exercise to check the remaining
axioms. [

Example. Let B be the associative C-algebra with generators py,...,p,, q1,-- ., q, and relations
[pi;pjl = 0 = [g;, ¢;] and [p;, q;] = ;.

One way to realize this in a natural way is to consider

Diff = {Zak(w) 5 ar(z) € Clz,...,z0), k= (k1,.. ,kn)}

k K, 4k
xzq'...0zn

8]61-‘1—. . .-‘rkn

an algebra of polynomial differential operators. This is isomorphic to B via the assignment
pi <> Biwl and q; <> .

We can give another construction of the same algebra in a coordinate free way. Let (V,w) be a
symplectic vector space and ¢ a dummy central variable. Note that there is a basis p1, ..., pn,
qi,- - -,qn Such that

w(pi,pj) = 0 = w(qi, ;) and w(p;, q;) = &j.



Form the algebra TV ® C|c] and give TV and C|c] the standard gradings by assigning ¢ and
every element v € V grading 1. Give TV ® C|[c| the natural grading extending this one. Let

B=TV®C[c]/(v; ® vy — 13 ® v1 — ¢~ w(vy,v5)).

This has a filtration F}, which consists of all monomials of degree < k in the generators written
in any order. We also have

ngE = S(V)[C] = (C[pl, c++9yPnsq1y--- 7qn>c]

because of the defining relation in B. This implies that B is almost commutative, hence the
polynomial ring Clp1,...,pn,q1,---,qn, c| has a Poisson algebra structure. Explicitly, this is given
by

B of 0Og of 0Og
thet= Z <3pi dq;  Og; 3pi> ‘
for f,g € Clp1,...,0n,q1,--,qn,c|.

Proof Idea: It is easy to see that both sides satisfy the Leibniz rule. Thus, it is enough to show
that they agree on generators. [

By specializing ¢ = 1, we get a Poisson bracket on SV = C[p1,...,pn,q1,---,qs]. We can
identify SV ~ C[V*] . Since w is non-degenerate, we have a canonical isomorphism V* ~ V.
Thus, we can give V* a symplectic structure and SV would be the algebra of polynomial
functions on V*. The elements p1,...,pn,q1,...,q, € V would form a coordinate system of V
where the symplectic form on V* is of the form

wlv- = dp; Adgi.

Observation: The Poisson algebra structure given by the symplectic structure on V* is exactly
the Poisson algebra structure that we just defined.

If f,g € SV are homogeneous elements of degree 2, then from our formula we know that {f, g}
is of degree 2 as well. Thus, the Poisson bracket defines a bracket on S?V, the space of degree
2 homogeneous elements.

Lemma 1.3.5. The elements of degree 2 form a Lie algebra isomorphic canonically to sp(V),
the symplectic Lie algebra.

Recall that the symplectic lie algebra sp(V') consists of all morphisms A : V' — V which
preserve the symplectic form: w(Az,y) + w(z, Ay) = 0.

Proof. If f € S?V and g € S'V, then deg{f, g} = 1. Thus via the Poisson bracket, S?V acts on
S'V. This gives a map SV — End(S'V) = End(V).



For f,g € S'V, we have that w(f, g) = {f, g} from construction. Thus, for h € S?V, f,g € S'V,
we have

w({h, £}, 9) + w(f,{h, g}) = {{h, f}, g} + {f, {h, g3} = {h,w(f,9)} = 0

from the Jacobi identity. This shows that we actually have a Lie algebra morphism S2V — sp(V)
. To prove that this is isomorphism, it is enough to check that they have the same dimension
and that it is injective. This is injective because if f € S2V was in the kernel, that would imply
that f would commute with S'V. Since S'V generates SV, the algebra SV would have non-
trivial center. But it is clear from the formula for the lie bracket that this algebra has no center. [J

Example: Algebra of Regular Differential Operators

The results in this example hold for X a smooth manifold, open subset of C", or a smooth
complex affine algebraic variety.

Let 7(X) be the vector space of regular vector fields on X, and let D(X) be the sub-algebra of
EndcO(X) generated by O(X) and 7 (X) where O(X) is viewed as a operator by multiplication.
Then we have a filtration

O(X) = Do(X) C Dl(X) C DQ(X) CcC...

where D;(X) = O(X) + T (X) and D,, = D1(X) - Dp—1(X). Let D(X) = | D»(X) be the algebra
of regular differential operators.

When X is a smooth manifold or open subset of C¢, then locally we can write

U= Y Up . ng(@)0] . 0L, Uy g € OX).
M1y . Ng

Moreover, in the case where X is a smooth manifold, using partitions of unity we can prove for
any u : O(X) — O(X) if on any chart it restricts to a operator of the above form, then v € D(X).

Principal Symbols
We now define a way to associate a polynomial function to every differential operator.

First consider the setting X C C". Let u € D(X) be a differential operator of order n. Then u can
be written in the above form. Let z1,...,z4,p1,...,pq be the standard coordinates on T*X. We
define the principal symbol oy, (u) by

on(u) = Z Un,,..ng(2) -] ... D) € O(T*X).

When X is a smooth manifold, this can be defined in any local chart.

The principal symbol of first order can be defined intrinsically. First let u = £ + f be an order 1
differential operator where £ € 7 (X) and f € O(X). Then o1(u) = 01(§). Let £ = > w;0; and let



aeT;X. Then
o1(§)(a) = Zui(fU)Pi(a) = Zuz‘(f’?)a(ai) = (o, &)
We have written ¢ in an intrinsic way.

Inspired by this, on a smooth manifold X there is a well-defined regular function o,,(u) on T*X
which restricts to the previously defined one in any local chart. From the intrinsic definition of
o1(8)(a) = (£ray @), We see that o, is a regular function on T*M. To prove that o,, can be
extended to a regular function, note that any v € D,,(X) can be written as the sum of
monomials of the form &; - ... - &, for r < n. On a local chart, it is not difficult to verify that

Un(fl .- -fr) = 01(51)01(52) . --01(§r)

when r = n and 0 otherwise. So we get a coordinate-free expression for o,, which proves that
o, is a well-defined regular function.

We can do something similar when X is algebraic, but we omit this construction. See page 31 if
interested.

The upshot is we get a well-defined morphism
o, : D (X)/D,,_1(X) — degree n homogeneous polynomials on 7* X.

In all three settings, o,, ends up being an isomorphism. For references on where to find proof,
see page 32. Putting all of these together, we get an algebraic isomorphism

gr D(X) — EB homogeneous polynomial functions on 7% X of degree n = Opoi(T* X).

n>0

Since D(X) is almost commutative, there is a canonical Poisson structure on gr D(X) which
carries over to O, (T* X) via the isomorphism. It turns out that this is the same Poisson
structure given by the symplectic structure on T* X.

Theorem. The Poisson structure on O,,(T* X) is the same as the one arising from the Poisson
structure on T*X.

Proof. Since both Poisson structures satisfy the Leibniz rule, it suffices to prove that they are
the same on generators. We work locally and verify that they are the same by explicit
calculation. Given two vector fields u,v € T(X), we have

0 0
Then, we have

o1(u) =Y ui(@)pi, o1(v) = > vi(z)p:.



We want to prove that o([u,v]) = {o1(u),o1(v)}. We can compute

Oov; 8 ou; 0O
[, o] = Z < " Ox; Ox; — Y Oz ami>

12

which gives
Ov; Ou;
oul) = X (wign, - v 5w ).
i, J

On the other hand, from the formula is the earlier example we have

{o1(u),o1(v)} = Z <32;k 0o1(v)  Ooi(v) 801(u)>

Ozy, Opr. oxy,

_ij ul@mipj vjaxjpl = o1(|u,v|).

O
To a vector field u on X there is a canonical way to associate a vector field z on T* X.

Indeed, we have that a vector field on X gives an infinitesimal diffeomorphism (flow) on X,
which gives an infinitesimal diffeomorphism of T* X which then gives a vector field on T*X.

In the algebraic setting, we will construct this lift explicitly. Note that we have a map
u:T(X)+0X) - T(X)+0O(X)

defined by @(¢ + f) = [u, £] + u(f) where u acts by the Lie derivative. When 7 (X) is a free
O(X) module, then O(T*X) ~ ST (X). A vector field on T*X is equivalent to a derivation on
O(T*X). Since @ can be extended to a derivation on ST (X), this is a well-defined vector field.

In the general case, we can cover X by locally free open sets, define it on each set, and then
glue them together since the definition is coordinate free. By our construction,

Ti(lUa) = ug where m: T* X — X.
Over manifolds, we can make the construction explicit as follows:

Let u be a vector field on X
let 7 : T* X — X be the canonical projection.

Let f, : T*X — X be the function defined by

Let @ = X, , the symplectic vector field on T*X. Then



@ is a lift of

Claim. @ is a symplectic vector field on T* X.
Proof Sketch. Verify that ) is invariant under the infinitesimal automorphism on T* X induced
from infinitesimal automorphism on X. This means that L3\ = 0. Thus, we have

Law = Lgd)\ = dLg)\ =0.

g

Recall that any function on T* X gives a symplectic vector field on T*X. In fact, given a vector
field u, it turns out that o1 (u) € O(T*X) exactly gives the vector field @ on T* X.

Lemma. @ = &,,(,) and o1(u) = Ae(@) = igA.
Proof. Note that
0 = L) = igdA + digh = iqw + d(ig))
Thus, we have that w(-, @) = d(izA). We can then compute for any a € T* X,
(iaA)(@) = Aa(@) = a(m,(8)) = a(u) = (a,u) = o1(u)(a).

Thus o,(u) = A, (@). This completes the proof to both parts. [J
Example. (Poisson structure coming from a finite dimensional Lie algebra)

Let g be a finite dimensional Lie algebra. The universal enveloping algebra Ug has a canonical
filtration

C=UpgclUigcC...

where Uig is the C span of monomials of degree < j formed by elements in g.

Theorem. (PBW Theorem)
There are canonical graded algebra isomorphisms

gr Ug ~ Sg = C[g"].

Thus, Ug is almost commutative and C[g*| has a canonical Poisson structure. We describe this
structure.

Letes,...,e, be abasis of g and let cfj be constants such that

leivej] =) crep.
j

Note that g ~ (g*)* so we can view elements in g as linear functions on g*. Let
zi,...,2, € (g*)* be the coordinate functions corresponding to ey, ..., e, (€.9. () = a(ey)).



Proposition. One has the following two expressions for the Poisson bracket { f, g} for
f,9 € Clg’].

of 0Og
{f>g} ZCU L 8%2 8$J

Proof. This follows our standard argument. Both sides satisfy the Leibniz rule, it suffices to
check both on linear functions. Note that we have {z,y} = [z,y] and in particular
{ei,ej} = lei, ej] = chfjek. This should be enough. O

We connect the Poisson structure of Clg*| to the symplectic structure on coadjoint orbits in g*.
Note that any f, g € C[g*] can be viewed as regular functions on any O C g*. Thus, we can take
the Poisson bracket with respect to the symplectic structure coming from Q. It turns out that this
is the same as the bracket we just defined.

Proposition. For any regular functions f, g € C[g*] and any coadjoint orbit O C g*, we have

{fa g}|® = {f|®79|©}symplectic-

Proof. From the standard argument, we only need to show for linear functions. Let
z,y € g=(g*)*. Then {z,y} = [z,y]. For any a € O, we have

{x,y}(a) = [:z:,y](a) = a([ib,y]) = wa(&xaé.y) = {w’@7y|@}symplectic-

Isotropic, Coisotropic, Lagrangian subvarieties
Let (V,w) be a symplectic vector space.

Definition. A linear subspace W C V is called

(Isotropic) If W c Wv
(Co-isotropic) If W > Wv,
(Lagrangian) If W = W+,

Example. Let V = C?" and {ey, ..., ey, f1,..., f,} a basis satisfying w(e;, e;) = 0 = w(f;, f;) and
w(ei, f]) = 5” Then

W = (e1,...,ex) is isotropic
W = (e1,...,en, frt1,. -, fa) iS COiSOtropic.
(€1,...,e,) and (fy,..., f,) are lagrangian.

Let (M, w) be a symplectic manifold.

Definition. A subvariety Z of M is called an isotropic (coisotropic, langrangian) subvariety of M,
if for any smooth point z € Z, T.Z is an isotropic (coisotropic, lagrangian) subspace of T, M.



Example. Let X be any manifold, and M = T* X its cotangent bundle with canonical symplectic
form w. Let f € O(X). Then the image of df : M — T*X is a lagrangian subvariety of T*X. In
fact, the image of a 1-form is lagrangian if and only if it is closed.

Proof sketch. Letn: X — T*X be a 1-form. Then
(1" A)p(v) = Ayp) (dnp(v)) = n(p) (dmy(p) © dny(v)) = n(p) (v).

Thus n*A = nfor all 1 forms. Since dimn(X) = +dim T*X, it suffices to show that 5(X) is
isotropic. In other words, we want n*w = 0. But we can compute

N*'w =n"d\ =dn*\ = dn.
Thus it is lagrangian if and only if n is closed. (I

Definition. Let X be a manifold and T* X its cotangent bundle. Given a submanifold Y C X,
define Ty X to be the conormal bundle of Y. Each fiber will be

(TyX)y = (T,Y)" CT;X.

Proposition. The total space of the bundle Ty X is a lagrangian submanifold of T* X stable
under dilations along the fibers of T* X.

Proof Sketch. Verify that dim Ty X = 1/2 - dim T*X. Then we want to prove that Ty X is
isotropic, that is w|z; x = 0. It is enough to show that A|7. x = 0, but this follows from the
definition of A and Ty X. [J

We say a subvariety of T* X stable under dilations along the fibers is a cone subvariety of T*X.
Thus in the previous proposition, we showed that the conormal bundle is a lagrangian cone
subvariety.

We can give a sort of converse and characterize lagrangian cone subvarieties in a cotangent
bundle in terms of conormal bundles.

Let Eu be the Euler vector field generating the C* action along the fibers of T*X. In local
coordinates, we have A = ) p;dq;, Eu = Zpiaip,- and w = ) dp; A dg; so we have that ig,w = A

Lemma. (Kashiwara) Let X be a smooth algebraic variety. Assume A C T*X is a closed
irreducible algebraic lagrangian subvariety. Let Y be the smooth part of =(A) where
m:T*X — X is the projection. Then A = Ty X.

Proof Sketch.
Since A is C*-stable, Fu is tangent to A. Since it is lagrangian, for any vector ¢ tangent to Fu
we have



0 = w(Bu,§) = A(E)-

Thus A\|x = 0. So if we pick any a € A™ such that y = m(a) € Y, by definition of A we know that
o vanishes on the image of 7, : T,A — T,Y. From Bertini-Sard's lemma, there is a Zariski open
dense subset A%meric ¢ A9 such that this map is surjective at any point. Hence a(7,Y) = 0
and o € Ty X. This shows that A%meric Ty X. Both of these are irreducible varieties (since A is
irreducible) of the same dimension since A is lagraigian, thus we have

A = Ageneric — T{;X
O
Here is an application of this characterization:

Let V be a finite dimensional vector space, and let G C PGL(V) be an (irreducible) algebraic
subgroup.

Theorem. Assume that G has finitely any orbits on P(V'). There is a natural bijection between
the G-orbits on P(V)) and the G-orbits on P(V*).

Proof Sketch.

Let G be the inverse image of G under GL(V) — PGL(V). Then G contains the scalars and it is
enough to exhibit a natural bijection between G orbits on V and G orbits on V*.

Note that we have canonical isomorphisms T*V =V x V* = T*(V*). Let py, py- be the
projections of the two factors. We now describe the correspondence between orbits.

Let O c V* be a G orbit. Then T;3(V*) is a lagrangian cone subvariety of V x V*. Let

O = pv(T5(V*)).
Few observations: O is G-stable (look at fibers) and irreducible subvariety of V. We prove

O is the closure of a single G-orbit OV C V.
The orbit O can be recovered from the orbit O".

Lemma. Let G be a connected algebraic group acting on an algebraic variety X. Then any
irreducible G-stable algebraic subvariety of X is the closure of a single G-orbit.

Proof.

Let Y be this subvariety. Let O be the orbit of maximal dimension. Since O is not contained in
the closure of any other orbit and there are only finitely many orbits, O must be an open subset
of Y. ThusO =Y.



This implies that O is the closure of a single G-orbit 0 C V. To prove (2.), we can view T (V*)
as an irreducible C*-stable lagrangian subvariety of T*V. Thus, by a previous lemma, we have
T (V*) = Ty V where Y is the smooth points of the image ofW under the projection

py : V x V* = V. But this image is 0. Thus Y = OV and

(V") =Tz (V).

By switching @ and O we get our bijection. [J



