
Section 1: Symplectic Manifolds

In this section, X will be

Definition. (Symplectic Structure)
A symplectic structure on X is a non-degenerate regular (smooth, holomorphic, algebraic) 2-
form ω such that dω = 0.

Example 1. Let X = C
2n with coordinates x1,… ,xn, y1,… , yn. Then

ω = dx1 ∧ dy1 +…+ dxn ∧ dyn

is a symplectic structure.

Now, we give more examples of symplectic structures.

Example 2. Let M be any manifold. Then the cotangent bundle has a canonical symplectic
structure.

Idea: we construct a one-form λ on T ∗M and set ω = dλ.
To construct λ, for every α ∈ T ∗M, we want to associate a linear function λα : Tα(T ∗M) → 0.
Let ξ ∈ Tα(T ∗M) and π : T ∗M → M be the natural projection. Then, we define

λα(ξ) := ⟨α,π∗ξ⟩ ∈ C.

Using Coordinates

Suppose y1,… , yn is a coordinate system for M and x1,… ,xn the dual coordinate system.
These give a chart in T ∗M. Any ξ ∈ Tα(T ∗M) can be written in the form

ξ = ∑ bi
∂

∂xi
+ ∑ ci

∂

∂yi
.

We have that

π∗(ξ) = ∑ ci
∂

∂yi
.

Thus, we see that

λα(ξ) = ⟨α,π∗ξ⟩ = ∑ ciα(
∂

∂yi
) = ∑ cixi(α).

1. a C∞-manifold

2. complex manifold
3. algebraic variety over C



(The last step is how the dual coordinates are constructed)
We can write this as

λ = ∑xidyi ⟹ dλ = ∑ dxi ∧ dyi.

Thus dλ is locally of the form in Example 1, hence non-degenerate.

Example 3. Let G be a Lie group with lie algebra g. The adjoint G-action on g gives gives rise to
a transposed co-adjoint G-action on g∗

Proposition. Any co-adjoint orbit O ⊆ g∗ has a natural symplectic structure.

Proof.
Pick any point α ∈ O ⊆ g∗. We want a skew-symmetric form on TαO. We have a natural
isomorphism O ≃ G/Gα where Gα is the isotropy group of α. So we can write

TαO ≃ g/gα.

We want a skew-symmetric form on g/gα. We first define a form

ωα : g × g → C.

given by ωα(x, y) = α([x, y]). To show that this descends to a non-degenerate form on g/gα, it is
enough to show that gα is the radical of ωα. Indeed, we know that g ∈ Gα if and only if
Ad∗g(α) = α. Differentiating, x ∈ gα if and only if ad∗(x)(α) = 0. This right condition is
equivalent to for all y ∈ g

0 = ⟨ad∗(x)α, y⟩ = ⟨α, ad(x)(y)⟩ = ⟨α, [x, y]⟩ = α([x, y]).

Thus ωα : g/gα × g/gα → C is non-degenerate skew-symmetric on O. It is enough to prove that
ω is closed.

Recall Cartan's formula for exterior derivative: Given ξ1, ξ2, ξ3 vector fields we have

Any element x ∈ g gives rise to a vector field ξx on O. In general, if G acts on M, then every
vector in g gives a vector field in M via

x ∈ g⟶ ξx(m) :=
d

dt
|t=0 exp(xt).m

In our case, since O is homogeneous, the tangent spaces of O are spanned by the ξx. Explicitly
in our case, the vector field ξx is given by

ξx(α) =
d

dt
|t=0Ad∗(exp(tx))α.

dω(ξ1, ξ2, ξ3) = ξ1 ⋅ ω(ξ2, ξ3) + ξ3 ⋅ ω(ξ1, ξ2) + ξ2 ⋅ ω(ξ3, ξ1)

− (ω([ξ1, ξ2], ξ3) + ω([ξ3, ξ1], ξ2) + ω([ξ2, ξ3], ξ1)).



Hence, it suffices to prove that dω(ξx, ξy, ξz) = 0 for all x, y, z ∈ g. From a well-known formula of
Cartan for the exterior derivative, we have

It is not difficult to see that ω(ξy, ξz)(α) = α([y, z]). We also have

Then ω is closed from the Jacobi identity.

Section 2: Poisson Algebras

In this section, A be a commutative C algebra.

Definition. A commutative algebra A endowed with an additional C-bilinear anti-symmetric
bracket {⋅, ⋅} : A×A → A is called a Poisson algebra if the following hold:

Any symplectic manifold has a natural Poisson algebra.

Let (M,ω) be a symplectic manifold. The non-degenerate 2-form gives a canonical
isomorphism TM ≃ T ∗M. Thus, we can define a C-linear map ξ : O(M) → X(M) denoted
f ↦ ξf  such that

ω(?, ξf) = df

or equivalently iξfω = −df. For any vector field η and any function f, we have

ω(η, ξf) = ηf.

We define a bracket on O(M) in the following way:

{f, g} = ω(ξf , ξg) = ξfg = −ξgf.

In fact, the vector fields ξf  also preserve the symplectic structure.

Definition. A vector field ξ is called symplectic if it preserves the symplectic form, i.e., Lξω = 0.

(dω)(ξ1, ξ2, ξ3) = ξ1 ⋅ ω(ξ2, ξ3) + ξ3 ⋅ ω(ξ1, ξ2) + ξ2 ⋅ ω(ξ3, ξ1)

− (ω([ξ1, ξ2], ξ3) + ω([ξ3, ξ1], ξ2) + ω([ξ2, ξ3], ξ1)).

ξxωα(ξy, ξz) = ξxα([y, z])

=
d

dt
|t=0Ad∗(exp(tx))α([y, z])

=
d

dt
|t=0α(Ad(exp(tx))[y, z])

= α(ad(x)[y, z])

= α([x, [y, z]]).

1. A is a Lie algebra with respect to {⋅, ⋅};
2. Leibniz rule: {a, b ⋅ c} = {a, b} ⋅ c+ b ⋅ {a, c} for all a, b, c ∈ A.

The bracket {⋅, ⋅} is called a Poisson bracket and we say that it gives a Poisson structure
to A.



Lemma. For any f ∈ O(M), ξf  is symplectic.

Proof.
From Cartan's homotopy formula, we have

Lξfω = iξfdω+ d(iξfω) = 0 + 0 = 0.

□

Proposition. The assignment f ↦ ξf  gives a bracket preserving map

(O(M), {⋅, ⋅})⟶ (symplectic vector fields on M, [⋅, ⋅])

Proof. We want to show that [ξf , ξg] = ξ{f,g}. It is a general fact about the lie derivative that

ξ ⋅ ω(ξ1, ξ2) = Lξ(ω(ξ1, ξ2)) = (Lξω)(ξ1, ξ2) + ω(Lξξ1, ξ2) + ω(ξ1,Lξξ2).

Thus, when ξ is symplectic we have

ξ ⋅ ω(ξ1, ξ2) = ω([ξ, ξ1], ξ2) + ω(ξ1, [ξ, ξ2]).

This implies that for any vector field η, we get that

Since the right hand side is −ξfηg which implies that

ω(η, [ξf , ξg]) = η{f, g} ⟹ ξ{f,g} = [ξf , ξg].

□

Theorem. The algebra O(M) of regular functions on a symplectic manifold M together with
{⋅, ⋅} is a Poisson algebra.

Proof. To prove that the Jacobi identity, we know that

[ξf , ξg]h = ξ{f,g}h = {{f, g},h}.

On the other hand,

[ξf , ξg]h = ξfξgh− ξgξfh = ξf{h, g} − ξg{f,h} = {{h, g}, f} − {g, {f,h}}.

This proves the Jacobi identity. The Leibniz rule is obvious since differentiation along vector
fields are derivation. □

Section 3: Poisson Structures arising from Non-commutative Algebras

Let B be an associative filtered (non-commutative) algebra with unit. In other words, we have a
filtration

ξf ⋅ ω(ξg, η) = ω([ξf , ξg], η) + ω(ξg, [ξf , η])

= ω([ξf , ξg], η) − ξfηg+ ηξfg.



C = B0 ⊂ B1 ⊂ B2 ⊂ …, ⋃
i

Bi = B

such that Bi ⋅Bj ⊆ Bi+j for all i, j ≥ 0. Let A = grB = ⨁i(Bi/Bi−1). The multiplication in B
gives a well-defined product

Bi/Bi−1 ⊗Bj/Bj−1 → Bi+j/Bi+j−1

making A into an associative algebra.

Definition. We say B is almost commutative if grB is commutative with respect to the above
product.

Proposition. If B is almost commutative, then gr B has a natural Poisson structure.

Proof.
We first define a map

{⋅, ⋅} : Bi/Bi−1 ×Bj/Bj−1 → Bi+j−1/Bi+j−2

by doing the following. Let ai ∈ Bi/Bi−1 and aj ∈ Bj/Bj−1 and let bi ∈ Bi, bj ∈ Bj be
representatives. Then, we let

{a1, a2} = (bibj − bjbi) (mod Bi+j−2).

We know that bibj − bjbi ∈ Bi+j−1 from almost commutativity. It is not hard to check that this is
independent of our choice of representative. We leave it as an exercise to check the remaining
axioms. □

Example. Let B be the associative C-algebra with generators p1,… , pn, q1,… , qn and relations

[pi, pj] = 0 = [qi, qj] and [pi, qj] = δij.

One way to realize this in a natural way is to consider

Diff = {∑ ak
–
(x)

∂ k1+…+kn

∂xk1
1 …∂xkn

n

, ak
–
(x) ∈ C[x1,… ,xn], k– = (k1,… , kn)}

an algebra of polynomial differential operators. This is isomorphic to B via the assignment
pi ↔

∂
∂xi

 and qi ↔ xi.

We can give another construction of the same algebra in a coordinate free way. Let (V ,ω) be a
symplectic vector space and c a dummy central variable. Note that there is a basis p1,… , pn,
q1,… , qn such that

ω(pi, pj) = 0 = ω(qi, qj) and ω(pi, qj) = δij.



Form the algebra TV ⊗ C[c] and give TV  and C[c] the standard gradings by assigning c and
every element v ∈ V  grading 1. Give TV ⊗ C[c] the natural grading extending this one. Let

B̃ = TV ⊗ C[c]/(v1 ⊗ v2 − v2 ⊗ v1 − c ⋅ ω(v1, v2)).

This has a filtration Fk which consists of all monomials of degree ≤ k in the generators written
in any order. We also have

grF B̃ = S(V )[c] = C[p1,… , pn, q1,… , qn, c]

because of the defining relation in B̃. This implies that B̃ is almost commutative, hence the
polynomial ring C[p1,… , pn, q1,… , qn, c] has a Poisson algebra structure. Explicitly, this is given
by

{f, g} = ∑
i

(
∂f

∂pi

∂g

∂qi
−

∂f

∂qi

∂g

∂pi
) ⋅ c

for f, g ∈ C[p1,… , pn, q1,… , qn, c].

Proof Idea: It is easy to see that both sides satisfy the Leibniz rule. Thus, it is enough to show
that they agree on generators. □

By specializing c = 1, we get a Poisson bracket on SV = C[p1,… , pn, q1,… , qn]. We can
identify SV ≃ C[V ∗] . Since ω is non-degenerate, we have a canonical isomorphism V ∗ ≃ V .
Thus, we can give V ∗ a symplectic structure and SV  would be the algebra of polynomial
functions on V ∗. The elements p1,… , pn, q1,… , qn ∈ V  would form a coordinate system of V
where the symplectic form on V ∗ is of the form

ω|V ∗ = ∑ dpi ∧ dqi.

Observation: The Poisson algebra structure given by the symplectic structure on V ∗ is exactly
the Poisson algebra structure that we just defined.

If f, g ∈ SV  are homogeneous elements of degree 2, then from our formula we know that {f, g}
is of degree 2 as well. Thus, the Poisson bracket defines a bracket on S 2V , the space of degree
2 homogeneous elements.

Lemma 1.3.5. The elements of degree 2 form a Lie algebra isomorphic canonically to sp(V ),
the symplectic Lie algebra.

Recall that the symplectic lie algebra sp(V ) consists of all morphisms A : V → V  which
preserve the symplectic form: ω(Ax, y) + ω(x,Ay) = 0.

Proof. If f ∈ S 2V  and g ∈ S 1V , then deg{f, g} = 1. Thus via the Poisson bracket, S 2V  acts on
S 1V . This gives a map S 2V → End(S 1V ) = End(V ).



For f, g ∈ S 1V , we have that ω(f, g) = {f, g} from construction. Thus, for h ∈ S 2V , f, g ∈ S 1V ,
we have

ω({h, f}, g) + ω(f, {h, g}) = {{h, f}, g} + {f, {h, g}} = {h,ω(f, g)} = 0

from the Jacobi identity. This shows that we actually have a Lie algebra morphism S 2V → sp(V )

. To prove that this is isomorphism, it is enough to check that they have the same dimension
and that it is injective. This is injective because if f ∈ S 2V  was in the kernel, that would imply
that f would commute with S 1V . Since S 1V  generates SV , the algebra SV  would have non-
trivial center. But it is clear from the formula for the lie bracket that this algebra has no center. □

Example: Algebra of Regular Differential Operators

The results in this example hold for X a smooth manifold, open subset of Cn, or a smooth
complex affine algebraic variety.

Let T (X) be the vector space of regular vector fields on X, and let D(X) be the sub-algebra of
EndCO(X) generated by O(X) and T (X) where O(X) is viewed as a operator by multiplication.
Then we have a filtration

O(X) = D0(X) ⊂ D1(X) ⊂ D2(X) ⊂ …

where D1(X) = O(X) + T (X) and Dn = D1(X) ⋅Dn−1(X). Let D(X) = ⋃Dn(X) be the algebra
of regular differential operators.

When X is a smooth manifold or open subset of Cd, then locally we can write

u = ∑
n1,…,nd

un1,…,nd
(x)∂n1

1 …∂nd

d , un1,…,nd
∈ O(X).

Moreover, in the case where X is a smooth manifold, using partitions of unity we can prove for
any u : O(X) → O(X) if on any chart it restricts to a operator of the above form, then u ∈ D(X).

Principal Symbols
We now define a way to associate a polynomial function to every differential operator.

First consider the setting X ⊆ C
n. Let u ∈ D(X) be a differential operator of order n. Then u can

be written in the above form. Let x1,… ,xd, p1,… , pd be the standard coordinates on T ∗X. We
define the principal symbol σn(u) by

σn(u) = ∑
n1+…+nd=n

un1,…,nd
(x) ⋅ pn1

1 … p
nd

d ∈ O(T ∗X).

When X is a smooth manifold, this can be defined in any local chart.

The principal symbol of first order can be defined intrinsically. First let u = ξ+ f be an order 1
differential operator where ξ ∈ T (X) and f ∈ O(X). Then σ1(u) = σ1(ξ). Let ξ = ∑ui∂i and let



α ∈ T ∗
xX. Then

σ1(ξ)(α) = ∑ui(x)pi(α) = ∑ui(x)α(∂i) = ⟨α, ξx⟩.

We have written σ1 in an intrinsic way.

Inspired by this, on a smooth manifold X there is a well-defined regular function σn(u) on T ∗X

which restricts to the previously defined one in any local chart. From the intrinsic definition of
σ1(ξ)(α) = ⟨ξπα,α⟩, we see that σ1 is a regular function on T ∗M. To prove that σn can be
extended to a regular function, note that any u ∈ Dn(X) can be written as the sum of
monomials of the form ξ1 ⋅ … ⋅ ξr for r ≤ n. On a local chart, it is not difficult to verify that

σn(ξ1 … ξr) = σ1(ξ1)σ1(ξ2)…σ1(ξr)

when r = n and 0 otherwise. So we get a coordinate-free expression for σn which proves that
σn is a well-defined regular function.

We can do something similar when X is algebraic, but we omit this construction. See page 31 if
interested.

The upshot is we get a well-defined morphism

σn : Dn(X)/Dn−1(X)⟶ degree n homogeneous polynomials on T ∗X.

In all three settings, σn ends up being an isomorphism. For references on where to find proof,
see page 32. Putting all of these together, we get an algebraic isomorphism

gr D(X)⟶⨁
n≥0

homogeneous polynomial functions on T ∗X of degree n = Opol(T
∗X).

Since D(X) is almost commutative, there is a canonical Poisson structure on gr D(X) which
carries over to Opol(T ∗X) via the isomorphism. It turns out that this is the same Poisson
structure given by the symplectic structure on T ∗X.

Theorem. The Poisson structure on Opol(T ∗X) is the same as the one arising from the Poisson
structure on T ∗X.

Proof. Since both Poisson structures satisfy the Leibniz rule, it suffices to prove that they are
the same on generators. We work locally and verify that they are the same by explicit
calculation. Given two vector fields u, v ∈ T (X), we have

u = ∑ui(x)
∂

∂xi

, v = ∑ vi(x)
∂

∂xi

.

Then, we have

σ1(u) = ∑ui(x)pi, σ1(v) = ∑ vi(x)pi.



We want to prove that σ([u, v]) = {σ1(u),σ1(v)}. We can compute

[u, v] = ∑
i,j

(ui

∂vj
∂xi

∂

∂xj
− vj

∂ui

∂xj

∂

∂xi
)

which gives

σ1([u, v]) = ∑
i,j

(ui

∂vj
∂xi

pj − vj
∂ui

∂xj

pi).

On the other hand, from the formula is the earlier example we have

□

To a vector field u on X there is a canonical way to associate a vector field ~u on T ∗X.

Indeed, we have that a vector field on X gives an infinitesimal diffeomorphism (flow) on X,
which gives an infinitesimal diffeomorphism of T ∗X which then gives a vector field on T ∗X.

In the algebraic setting, we will construct this lift explicitly. Note that we have a map

~u : T (X) +O(X) → T (X) +O(X)

defined by ~u(ξ+ f) = [u, ξ] + u(f) where u acts by the Lie derivative. When T (X) is a free
O(X) module, then O(T ∗X) ≃ ST (X). A vector field on T ∗X is equivalent to a derivation on
O(T ∗X). Since ũ can be extended to a derivation on ST (X), this is a well-defined vector field.

In the general case, we can cover X by locally free open sets, define it on each set, and then
glue them together since the definition is coordinate free. By our construction,

π∗(~uα) = ux where π : T ∗X → X.

Over manifolds, we can make the construction explicit as follows:

Let u be a vector field on X
let π : T ∗X → X be the canonical projection.

Let fu : T ∗X → X be the function defined by

fu(ξ) = ξ(uπ(ξ)).

Let ~u = Xfu , the symplectic vector field on T ∗X. Then

{σ1(u),σ1(v)} = ∑
k

(
∂σ1(u)

∂pk

∂σ1(v)

∂xk
−

∂σ1(v)

∂pk

∂σ1(u)

∂xk
)

= ∑
i,j

(ui

∂vj
∂xi

pj − vj
∂ui

∂xj
pi) = σ1([u, v]).



Claim. ũ is a symplectic vector field on T ∗X.
Proof Sketch. Verify that λ is invariant under the infinitesimal automorphism on T ∗X induced
from infinitesimal automorphism on X. This means that Lũλ = 0. Thus, we have

Lũω = Lũdλ = dLũλ = 0.

□

Recall that any function on T ∗X gives a symplectic vector field on T ∗X. In fact, given a vector
field u, it turns out that σ1(u) ∈ O(T ∗X) exactly gives the vector field ũ on T ∗X.

Lemma. ũ = ξσ1(u) and σ1(u) = λ∙(ũ) = iũλ.

Proof. Note that

0 = Lũλ = iũdλ+ diũλ = iũω+ d(iũλ)

Thus, we have that ω(⋅, ũ) = d(iũλ). We can then compute for any α ∈ T ∗X,

(iũλ)(α) = λα(ũ) = α(π∗(ũ)) = α(u) = ⟨α,u⟩ = σ1(u)(α).

Thus σ1(u) = λ∙(ũ). This completes the proof to both parts. □

Example. (Poisson structure coming from a finite dimensional Lie algebra)

Let g be a finite dimensional Lie algebra. The universal enveloping algebra Ug has a canonical
filtration

C = U0g ⊂ U1g ⊂ …

where Ukg is the C span of monomials of degree ≤ j formed by elements in g.

Theorem. (PBW Theorem)
There are canonical graded algebra isomorphisms

gr Ug ≃ Sg = C[g∗].

Thus, Ug is almost commutative and C[g∗] has a canonical Poisson structure. We describe this
structure.

Let e1,… , en be a basis of g and let ckij be constants such that

[ei, ej] = ∑ ckijek.

Note that g ≃ (g∗)∗ so we can view elements in g as linear functions on g∗. Let
x1,… ,xn ∈ (g∗)∗ be the coordinate functions corresponding to e1,… , en (e.g. x1(α) = α(e1)).

1. ~u is a lift of u

2. L~uλ = 0.



Proposition. One has the following two expressions for the Poisson bracket {f, g} for
f, g ∈ C[g∗].

{f, g} = ∑ ckij ⋅ xk

∂f

∂xi

∂g

∂xj

.

Proof. This follows our standard argument. Both sides satisfy the Leibniz rule, it suffices to
check both on linear functions. Note that we have {x, y} = [x, y] and in particular
{ei, ej} = [ei, ej] = ∑k c

k
ijek. This should be enough. □

We connect the Poisson structure of C[g∗] to the symplectic structure on coadjoint orbits in g∗.
Note that any f, g ∈ C[g∗] can be viewed as regular functions on any O ⊆ g∗. Thus, we can take
the Poisson bracket with respect to the symplectic structure coming from O. It turns out that this
is the same as the bracket we just defined.

Proposition. For any regular functions f, g ∈ C[g∗] and any coadjoint orbit O ⊆ g∗, we have

{f, g}|O = {f|O, g|O}symplectic.

Proof. From the standard argument, we only need to show for linear functions. Let
x, y ∈ g = (g∗)∗. Then {x, y} = [x, y]. For any α ∈ O, we have

{x, y}(α) = [x, y](α) = α([x, y]) = ωα(ξx, ξy) = {x|O, y|O}symplectic.

Isotropic, Coisotropic, Lagrangian subvarieties

Let (V ,ω) be a symplectic vector space.

Definition. A linear subspace W ⊂ V  is called

Example. Let V = C2n and {e1,… , en, f1,… , fn} a basis satisfying ω(ei, ej) = 0 = ω(fi, fj) and
ω(ei, fj) = δij. Then

Let (M,ω) be a symplectic manifold.

Definition. A subvariety Z of M is called an isotropic (coisotropic, langrangian) subvariety of M,
if for any smooth point z ∈ Z, TzZ is an isotropic (coisotropic, lagrangian) subspace of TzM.

1. (Isotropic) If W ⊂ W ⊥ω

2. (Co-isotropic) If W ⊃ W ⊥ω.
3. (Lagrangian) If W = W ⊥ω.

1. W = ⟨e1,… , ek⟩ is isotropic
2. W ⊥ω = ⟨e1,… , en, fk+1,… , fn⟩ is coisotropic.
3. ⟨e1,… , en⟩ and ⟨f1,… , fn⟩ are lagrangian.



Example. Let X be any manifold, and M = T ∗X its cotangent bundle with canonical symplectic
form ω. Let f ∈ O(X). Then the image of df : M → T ∗X is a lagrangian subvariety of T ∗X. In
fact, the image of a 1-form is lagrangian if and only if it is closed.

Proof sketch. Let η : X → T ∗X be a 1-form. Then

(η∗λ)p(v) = λη(p)(dηp(v)) = η(p)(dπη(p) ∘ dηp(v)) = η(p)(v).

Thus η∗λ = η for all 1 forms. Since dim η(X) = 1
2 dimT ∗X, it suffices to show that η(X) is

isotropic. In other words, we want η∗ω = 0. But we can compute

η∗ω = η∗dλ = dη∗λ = dη.

Thus it is lagrangian if and only if η is closed. □

Definition. Let X be a manifold and T ∗X its cotangent bundle. Given a submanifold Y ⊂ X,
define T ∗

YX to be the conormal bundle of Y . Each fiber will be

(T ∗
YX)y = (TyY )⊥ ⊂ T ∗

y X.

Proposition. The total space of the bundle T ∗
YX is a lagrangian submanifold of T ∗X stable

under dilations along the fibers of T ∗X.

Proof Sketch. Verify that dimT ∗
YX = 1/2 ⋅ dimT ∗X. Then we want to prove that T ∗

YX is
isotropic, that is ω|T ∗

YX
= 0. It is enough to show that λ|T ∗

YX
= 0, but this follows from the

definition of λ and T ∗
YX. □

We say a subvariety of T ∗X stable under dilations along the fibers is a cone subvariety of T ∗X.
Thus in the previous proposition, we showed that the conormal bundle is a lagrangian cone
subvariety.

We can give a sort of converse and characterize lagrangian cone subvarieties in a cotangent
bundle in terms of conormal bundles.

Let Eu be the Euler vector field generating the C∗ action along the fibers of T ∗X. In local
coordinates, we have λ = ∑ pidqi, Eu = ∑ pi

∂
∂pi

 and ω = ∑ dpi ∧ dqi so we have that iEuω = λ

.

Lemma. (Kashiwara) Let X be a smooth algebraic variety. Assume Λ ⊂ T ∗X is a closed
irreducible algebraic lagrangian subvariety. Let Y  be the smooth part of π(Λ) where
π : T ∗X → X is the projection. Then Λ = T ∗

YX.

Proof Sketch.
Since Λ is C∗-stable, Eu is tangent to Λ. Since it is lagrangian, for any vector ξ tangent to Eu
we have

–



0 = ω(Eu, ξ) = λ(ξ).

Thus λ|Λ = 0. So if we pick any α ∈ Λreg such that y = π(α) ∈ Y , by definition of λ we know that
α vanishes on the image of π∗ : TαΛ → TyY . From Bertini-Sard's lemma, there is a Zariski open
dense subset Λgeneric ⊂ Λreg such that this map is surjective at any point. Hence α(TyY ) = 0

and α ∈ T ∗
YX. This shows that Λgeneric ⊂ T ∗

YX. Both of these are irreducible varieties (since Λ is
irreducible) of the same dimension since Λ is lagraigian, thus we have

Λ = Λgeneric = T ∗
YX.

□

Here is an application of this characterization:

Let V  be a finite dimensional vector space, and let G ⊂ PGL(V ) be an (irreducible) algebraic
subgroup.

Theorem. Assume that G has finitely any orbits on P(V ). There is a natural bijection between
the G-orbits on P(V ) and the G-orbits on P(V ∗).

Proof Sketch.

Let ~G be the inverse image of G under GL(V ) → PGL(V ). Then ~G contains the scalars and it is
enough to exhibit a natural bijection between ~G orbits on V  and ~G orbits on V ∗.

Note that we have canonical isomorphisms T ∗V = V × V ∗ = T ∗(V ∗). Let pV , pV ∗  be the
projections of the two factors. We now describe the correspondence between orbits.

Let O ⊂ V ∗ be a ~G orbit. Then T ∗
O(V

∗) is a lagrangian cone subvariety of V × V ∗. Let

~
O = pV (T ∗

O
(V ∗)).

Few observations: ~O is G-stable (look at fibers) and irreducible subvariety of V . We prove

Lemma. Let G be a connected algebraic group acting on an algebraic variety X. Then any
irreducible G-stable algebraic subvariety of X is the closure of a single G-orbit.

Proof.

Let Y  be this subvariety. Let O be the orbit of maximal dimension. Since O is not contained in
the closure of any other orbit and there are only finitely many orbits, O must be an open subset
of Y . Thus O = Y . □

––

–

1. ~O is the closure of a single ~G-orbit O∨ ⊂ V .

2. The orbit O can be recovered from the orbit O∨.

–



This implies that ~O is the closure of a single ~G-orbit O∨ ⊂ V . To prove (2.), we can view T ∗
O
(V ∗)

as an irreducible C∗-stable lagrangian subvariety of T ∗V . Thus, by a previous lemma, we have
T ∗

O
(V ∗) = T ∗

Y V  where Y  is the smooth points of the image of T ∗
O
(V ∗) under the projection

pV : V × V ∗ → V . But this image is O. Thus Y = O∨ and

T ∗
O
(V ∗) = T ∗

O∨(V ).

By switching O and O∨ we get our bijection. □

–

–––

–

––


