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Understanding opposing predictions of
Prochlorococcus in a changing climate

Vincent Bian1, Merrick Cai2 & Christopher L. Follett 3

Statistically derived species distribution models (SDMs) are increasingly used
to predict ecological changes on a warming planet. For Prochlorococcus, the
most abundant phytoplankton, an established statistical prediction conflicts
with dynamical models as they predict large, opposite, changes in abundance.
We probe the SDM at various spatial-temporal scales, showing that light and
temperature fail to explain both temporal fluctuations and sharp spatial
transitions. Strong correlations between changes in temperature and popu-
lation emerge only at very large spatial scales, as transects pass through
transitions between regions of high and low abundance. Furthermore, a two-
statemodel based on a temperature thresholdmatches the original SDM in the
surface ocean. We conclude that the original SDM has little power to predict
changeswhen Prochlorococcus is already abundant, which resolves the conflict
with dynamical models. Our conclusion suggests that SDMs should prove
efficacy across multiple spatial-temporal scales before being trusted in a
changing ocean.

Plankton are involved in nearly every fundamental biogeochemical
process in the oceans, feeding global fisheries production and driving
the marine carbon cycle1–3. Microbial populations are in turn sup-
ported by nutrient supplies, and their growth rates modified by light
and temperature4,5. Sincemicroorganisms are directly affected by, and
in turn directly affect their environment, it is crucial to understand the
impact that physical and chemical factors have on these populations6.
Great progress has been made both through the generation of prog-
nostic dynamical models7–10 and through statistical data-driven
approaches11–15.

Time dependent, differential equation based, population
dynamics models provide one method to explore what drives micro-
bial populations in the sea.Mostmodels of this class resolve only a few
plankton types16,17, but our capabilities for modeling a diversity of
plankton groups has greatly increased10,18,19. In general, these models
predict that the total global concentration of phytoplankton biomass
in the surface ocean will decrease with warming20,21, with localized
increases in high latitude regions where nutrients are more plentiful
and changes in light and temperature have a larger impact on
growth10,17.Mixingprocesses bringdeeper, nutrient ladenwaters to the

surface where they support vigorous plankton growth. As the surface
ocean warms, the thermal gradients (stratification) in the surface
ocean strengthen. This decreases vertical mixing and the nutrient
supply for phytoplankton growth. In the ocean’s gyre regions, where
small picoplankton are already a large fraction of the biomass, this
decrease in nutrient supply can lead directly to a decrease in the bio-
mass of small cells22. When growth rates are limited by the supply of
nutrients, like in oligotrophic gyres, small plankton have an advantage
because of their high surface area to volume ratio23. In high latitude
regions where nutrients are more plentiful, enhanced stratification
from surface warming is thus predicted to increase the abundance of
small cells relative to large plankton with decreasing nutrient supply.
The range of small phytoplankton is thus expected to increase.

Species distribution models (SDMs) take a complementary
approach to population dynamics models and aim to predict the
population of a species directly from data using a reduced set of
predictors13,24. When conditions are right, these models can reliably
and accurately predict the population size in different environments,
and be extended beyond the data used to parameterize them25,26.
Correlative SDMs are statistical models based on correlations between
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the distribution of a species and environmental factors. They are effi-
cient to build and can incorporate all available ancillary data. With an
increase in the availability of high quality plankton data, these models
have been generated to predict plankton populations and their
diversity in a modern and changing ocean27–31.

Determining the validity of both thesemodel types canbedifficult
because of the spatial patterning of ocean data32. The ocean can be
separated into physical and biophysical provinces with sharp spatial
transitions33,34. This, combined with the nonlinear nature of ecosystem
population dynamics, suggests distinct population regimes in the
sea35–37. Differences between model predictions and measurements
can thus be thought about in terms of ‘pattern errors’ and ‘magnitude
errors’38. Differences can be caused by the shifting of regime bound-
aries in space, or by the modification of population levels within a
province itself39.When statisticalmodels arebuilt fromglobaldatasets,
both pattern and magnitude errors can influence the goodness of fit.
Thus, it becomes critical to understand why a model has a good fit in
order to determine under which circumstances its predictions should
be trusted.

Here, we consider the plankton prediction problem in the context
of surface ocean (depth < 50 meters) populations of the globally
dominant phytoplankton Prochlorococcus40–43. Discovered in
198840, Prochlorococcus resides primarily between 40∘ N and 40∘ S,
thriving in the well lit surface waters. Due to its small size, Pro-
chlorococcus dominates low-nutrient (oligotrophic) areas of the ocean
where its high surface area to volume ratio provides an advantage for
acquiring nutrients43. The abundance of global concentration data for
Prochlorococcus makes it ideal for constructing statistical, machine
learning based SDMs14 (See schematic in Fig. 1). The importance of
both Prochlorococcus and the model constructed in Flombaum et al.
2013make it ideal for exploring the extendability of SDMs for plankton
prediction under climate change. Flombaum et al. apply multiple
techniques for building correlative SDMs: artificial neural network
models, non-parametric models, and a parametric regression44,45. For
the problem of predicting Prochlorococcus abundance, the parametric
regression model was not only the simplest, but also the most
effective14. Based entirely on temperature and photosynthetically
active radiation (PAR), the model predicts that Prochlorococcus

concentrations increase monotonically with temperature, and with
PAR up to a threshold value14. This model is combined with output of
sea surface temperature changes predicted by earth systemmodels to
predict large, systematic increases in Prochlorococcus populations by
210014,15,46. These predictions have large implications for topics ranging
fromunderstanding future changes in globalmicrobial biodiversity47,48

to carbon sequestration driven by biological export out of the surface
ocean49–51.

Recent work has extended themodel to other plankton types and
exposed a fascinating and important conflict15. While this statistical
model for plankton populations suggests large increases in Pro-
chlorococcus and other small plankton in the surface waters of the
ocean gyres, global population dynamics simulations suggest the
opposite18–20,22,52,53. Additionally, recent statistical work on a dataset of
Prochlorococcus collected from new transects isolated in the sub-
tropics suggests that the temperature sensitivity of SDMs changes sign
depending on which ancillary variables are included in the analysis27.
Thus, themodel predictions appear sensitive to both the spatial extent
of thedataset, and towhich ancillary variables areused.Understanding
the underpinnings of such dramatically different predictions among
SDMsandpopulation dynamicsmodels is important. As SDMsbecome
more prevalent and are used to make decisions about our future
ocean, understanding when they should be trusted is imperative31.
Prochlorococcus is an ideal test case: it is important biogeochemically;
large, global datasets exist for it; and a conflict exists between dyna-
mical and statistical model predictions.

As the temperature warms dynamical models predict that the
range of small-celled Prochlorococcus will expand while its concentra-
tion decreases10,17. This is due to increased stratification which
decreases nutrient supply. Can we build a similar understanding for
the predictions of the SDMs? Unfortunately, understanding the pre-
dictive power of SDMs can be difficult54,55. While fitting a model to
global datasets, the pattern and magnitude errors must be carefully
considered38. Temporal forcing and the inclusion of strong forcing
axes like depth (phytoplankton do not grow in the dark) may addi-
tionally smear observations across parameter space, making con-
tinuous models appear valid when they are not. These are some
reasons why SDMs trained on modern simulated data have difficulty
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Fig. 1 | Schematic of the operation of a species distribution model. SDMs, like
the Flombaum model14,15, take observed variables and provide predictions for
species abundance. The Flombaum model uses temperature and light (Photo-
synthetically Active Radiation, PAR) in an SDM to predict the concentration of

Prochlorococcus cells in the ocean. The schematic shows how this works using
satellite data for the climatologicalmonthofAugust.We explore thepowerof these
models at distinct spatial-temporal scales by focusing on local temporal fluctua-
tions and sharp spatial transitions in species abundance.
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under simulated warming55. Ideally, we would build and test SDMs
directly using experiments56, but often this is impractical. Using field
observations, however, we can test whether models and their depen-
dent variables maintain predictive power across multiple, distinct,
spatial-temporal scales. If a variable like temperature is predictive in
many different regimes, it is more likely that shifting it will lead to
predictable changes. Applying this idea, we first focus on population
fluctuations about amean state.When populations are stable, do small
changes in the driving variables correlate with changes in abundance?
Second, many populations experience sharp spatial transitions
between regions of differing abundance41,57. Do these transitions
cluster systematically when plotted against the dependent variables?
These ideas can be combined by looking at the correlation structure of
high resolution oceanographic transects as a function of scale.

Although the Flombaummodel is statistical58, we posit that if the
population is highly correlated with temperature and light across
multiple spatial-temporal scales, then it may generate accurate pre-
dictionsunder future conditions.This couldbedue either to thedirect,
causal, relationships between temperature, light and the relative
growth rates of the organisms, or due to hidden mechanisms which
connect temperature and light to nutrient and physical dynamics59.
Themechanistic connection does not need to be known for amodel to
be predictive. We focus on correlations between Prochlorococcus
populations in the surface ocean, light, and temperature under three
situations: global surface data and the predictive power of the Flom-
baum parametric regression model; the correlations of light and
temperature over time using long-term time series data; and the
spatial-temporal transitions between regions of high and low popula-
tion levels (See schematic in Fig. 1). We go on to demonstrate the

connection between the spatial scales of fluctuations in Pro-
chlorococcus abundance, temperature, and predictability by analyzing
correlations across a continuum of spatial scales. Our results provide
additional insight into how and why Prochlorococcus populations may
shift in the future, and strongly suggest the need for models to
demonstrate predictive power across a continuum of scales before
being trusted under future conditions.

Results
The Flombaummodel was constructed using a dataset containing data
from 103 cruises covering every major ocean basin. The dataset
includes colocalized measurements of longitude, latitude, and Pro-
chlorococcus abundance as measured by flow cytometry14,15. We first
reduce thedataset to theocean’s surface, includingonly data taken at a
depth of at most 50 meters that contains coincident PAR and tem-
perature measurements. A direct comparison of the Flombaummodel
and the surfacemeasured values is shown in Fig. 2a (11930 datapoints).
The Prochlorococcus abundance forms two main clusters: a set of
measurements very close to zero (6568datapoints), and amore spread
out cluster of nonzero measurements (5362 datapoints). To remain
consistent with Flombaum et al. 2013, for log-space calculations we
have reset zero measurements to 1 or log101 =0 in log-space.

The model captures the mean of the main non-zero data
cloud. The distinct cluster of near zero measurements, however,
appears systematically overestimated with a large range in predicted
values.One potential reason for this is that the Flombaummodel is less
predictive near the edge of the species’ spatial range (region from light
to dark in Fig. 1). This hierarchical structure in the model fit matches
our understanding of the broad biogeographical patterns of

Fig. 2 | Comparison of model predictions and observations. a A log-log plot of
the Prochlorococcus abundance predicted by the Flombaum model, vs the mea-
sured abundance, including data points from both the original Flombaum dataset
and theHOTdataset.bA linear scale plot of the predicted vs actualProchlorococcus

abundance for surface data from Station ALOHA. c A map of surface locations,
colored circles, within the Flombaum dataset. Red indicates an underprediction
and blue an overprediction.
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Prochlorococcus: large regions of relatively constant values and large
regions of none. To evaluate the Flombaum model’s geographical
dependence, we consider the difference between predicted and
measured Prochlorococcus abundance versus geographic location. The
results are shown in panel c of Fig. 2 (the same 11930 datapoints as
panel a). Dark blue regions in the North Pacific and South Atlantic
(30∘N and 30∘ S) occur in regions known to be near the geographic
rangeof theorganism42. This supports our assertion that the the strong
bi-modality in the prediction of this model may be due to its changing
predictive power near spatial transitions57.

Additionally, there is high variance within the high-concentration
cluster, which suggests exploring how the model captures variability
over time. We compare Flombaum model predictions with measured
data taken at a single location (green crosses in Fig. 2a, b). The Hawaii
Ocean Time-series (HOT) contains monthly measurements of Pro-
chlorococcus abundance, starting from December 1990, as well as a
suite of other measurements including temperature and PAR48,60. The
result of this comparison is shown in Fig. 2b (183 datapoints), with
Station ALOHA located just north of Hawaii in Fig. 2c. At the global
scale, acting as a single datapoint, Station ALOHA matches the pre-
dictions of the Flombaum model. In the restricted dataset, however,
the correlation between prediction and measurement is substantially
weaker, suggesting that the Flombaum model is partially confounded
by the effects of other variables and processes. Specifically, the main
axis of variation in the ALOHA dataset is not aligned with the axis of
prediction as shown by the vertically elongated data cloud in Fig. 2b.

This discrepancy is especially clear in Supplementary Fig. 2 where the
data is compared directly with temperature and PAR.

It is important to state clearly that the Flombaummodel was built
as a global scale predictor and it is not clear that it can or should be
applied down-scale, either in time or space. The predictive power of
the Flombaum model near the boundaries of the Prochlorococcus
range, and over short time periods, may not reflect the accuracy of
global scale predictions of the model, such as how Prochlorococcus
is expected to proliferate under climate change. However, we
expect that temperature and light, the input variables of the model, to
remain the driving variables even if the model structure is scale
dependent.

Temporal fluctuations
One way to explore whether light or temperature drive Pro-
chlorococcus is to determine how relatively small changes in these
variables correlatewith changes in abundance. Returning to theHawaii
Ocean Time Series station we compare changes in the monthly tem-
perature and PAR (with depth < 50 meters) with changes in the
monthly average abundance of Prochlorococcus (See Supplementary
Fig. 1). The resulting plots (using the same 183 datapoints as Fig. 2b)
are shown in Fig. 3a, b. Contrary to predictionsmade by the Flombaum
model, temperature changes are not positively correlated to
Prochlorococcus abundance (Pearson’s correlation coefficient
R = −0.02 ±0.12). Changes in PAR are only weakly negatively corre-
lated with changes in Prochlorococcus (R = −0.35 ± 0.12, R2 ≈ . 12).

Fig. 3 | Temporal fluctuations at Station ALOHA do not correlate strongly with
light and temperature.Month tomonth changes in Prochlorococcus population in
the upper 50 meters vs changes in temperature (a) and Photosynthetically Active

Radiation (PAR) (b). Changes in PAR vs. temperature vs. Prochlorococcus are
shown in c.
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However, both temperature and light could also act together to
influence the populations of Prochlorococcus. We plot the monthly
changes in light, temperature, and Prochlorococcus together in
Fig. 3c. For temperature and PAR regimes contained in the HOT
dataset, the Flombaum model predicts that Prochlororoccus
monotonically increases as a function of temperature, and mono-
tonically decreases as a function of increasing PAR for the range of
PAR values found in the surface ocean. Thus, we would expect more
increases in the lower-right quadrant of Fig. 3c, and more decreases
in the upper-left quadrant. Indeed, 57 ± 10% of the data points in the
lower-right quadrant represent increasing Prochlorococcus, while
21 ± 8% of the data points in the upper-left quadrant represent
increasing Prochlorococcus, as compared to 44 ± 5 % of the data
points in the whole plot. Performing a multivariate correlation
analysis with both PAR and temperature yields a combined
R2 = . 125 ± . 04, suggesting that roughly 12% of the fluctuation in
Prochlorococcus may be explained simply by fluctuations in light
and temperature at this location. This being the same value as the
correlation for light alone, however, suggests that there remains
little predictive power in temperature fluctuations at the monthly
timescale for surface populations.

Spatial transitions
Using data collated in the Simons CMAP database61, we investigated
howwell temperature and PAR predict locations separating regions of
high and low Prochlorococcus concentrations focusing on data col-
lected as part of the AtlanticMeridional Transect62 and Pacific focused
data from transects carrying the SeaFlow instrument (1897584 mea-
surements across 33 cruises)63. Many cruises record very large shifts or
transitions inProchlorococcus abundance occurring on a scale of about
150 km (see Supplementary Fig. 3), with the North Pacific cruise
MGL170464 containing two particularly obvious examples. Often, the
Prochlorococcus abundance will change on the order of 105 cells/mL in
less than 150 km of distance, far exceeding any other variance along
the cruise track. These events represent the cruise crossing a niche
boundary from a region suitable for Prochlorococcus into one less
suitable, or vice versa. The locations of these rapid shifts in abundance

were identified by finding the peaks in aHaar transformof the rawdata
(see Methods for more details)65.

For each transition, we find coincident temperature and PAR (See
Supplementary Fig. 1) using the Sea Surface Temperature66 andMODIS
Photosynthetically Available Radiation satellite derived datasets67,68.
These temperature and PAR values are shown in Fig. 4 for all identified
transitions which cross a concentration (75, 000 cells/ml) threshold
taken as approximately half of peak values in the surface Pacific in the
SeaFlow dataset (see Fig. 4a and Supplementary Fig. 1a–c). The col-
lected transitions donot appearon a tight curve, and spanawide range
of PAR and temperature values. This suggests that independent var-
iation in temperature andPARdonot shift the spatial niche boundaries
for Prochlorococcus. Returning to the Flombaum dataset (see Supple-
mentary Fig. 4), a similar picture emergeswhenplotting surface data in
temperature vs. PAR space. The overlap of observations greater than
and less than the threshold estimates the ability of PAR and tempera-
ture to predict the threshold value.We find that both the transitions in
Fig. 4c and the region of overlap in Supplementary Fig. 4 spanmost of
the range of PAR observations and more than 15 degrees of tempera-
ture. These results are additionally corroborated by plotting the cruise
track observations from SeaFlow and the AMT (See Supplementary
Fig. 5). The threshold choice of 75,000 cells/mL sits at the base of the
main data cloud which maintains a range of ~15 degrees (horizontal
distance between solid black curves) independent of observed
abundance.

The variability in the location of transitions in Prochlorococcus
concentration shown in Fig. 4 does not appear strongly correlated
with light and temperature. All transitions do, however, occur
above a temperature of ~13 °C and the idea that there is a temperature
threshold for Prochlorococcus growth is well established
experimentally41. We thus use our observations of transitions to pose a
simplified, two-state SDM for Prochlorococcus populations in the sur-
face ocean that is consistent with experiments41. Similar nonlinear
effects of temperature on general phytoplankton populations have
also been observed69. Our two-state model predicts that Pro-
chlorococcus concentrations can be expressed as a step-function in
terms of temperature where Prochlorococcus concentrations are zero

Fig. 4 | Boundary locations do not follow a contour of light and temperature.
Strong shifts in Prochlorococcus concentration along surface transects (such as the
one shown in a) representing niche transitions are plotted on the map (b) and in

co-localized PAR and temperature space (c). The dark curve is the predicted
boundary from the Flombaum model.
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(or set to log10 = 0) below a certain temperature (13 °C in this case) and
a constant above this temperaturewhich isfit to the Flombaumdataset
byminimizing the variance of the residuals. This idea is consistentwith
the Flombaummodel as well as the ideas that went into forming it and
can be viewed as a simplified version of the original model14. A sche-
matic for how this model functions is shown in Fig. 5a.

We can compare the fit of this SDM to the full prediction of the
Flombaummodel in both logarithmic (the modified logarithmic space
used to construct the original model14) and linear space (see Supple-
mentary Fig. 9, and Supplementary Table 1). The R2 values are highest
for both models in log-space, and are very similar (0.44 and 0.415 for
the original and two state models respectively), suggesting equiva-
lence between the twomodels in the surface ocean. In Supplementary
Fig. 9a, b the distributions of residuals in both linear and log-space are
compared between the twomodels. The bi-modality of the residuals in
log-space is matched by both models and the variance is equivalent
between them (see Supplementary Table 1) suggesting that they have
similar predictive power. In terms of variance, and consistent with
Supplementary Fig. 9a, b, the Flombaum residuals have a variance of
∼15% less than that of the two-statemodel in both linear and log-space.
This model equivalence can be thought about in terms of the latitu-
dinal prediction, first shown in Fig. 2c, as the dominant variation in the
species’ concentration occurs moving poleward. Residuals of the
predictions of the two models are plotted in linear space, logarithmic
differences are extremely small, as a function of latitude in Supple-
mentary Fig. 9c. Noting that the maximal difference appears in the
warm gyre and equatorial regions where abundances are normally
high, we can reduce the dataset to these regions (between 30∘S and
30∘N) and gain some insight. In this limited portion of the range,
R2 ≈0.00 for the two state model due to the warm temperatures being
above the thresholdwhereasR2 ≈0.04 for the fullmodel. In the tropics,
the full model provides an ~4% reduction of the residual variance in
linear space when compared to assuming a constant value (which
essentially explains none of the variance in the tropics). The original
model thus hasminimal predictive power over changes inside themain
range of Prochlorococcus.

We can usewavelets to test the effect of changing temperature on
changes in Prochlorococcus abundance as a function of spatial scale. In
Fig. 5b we explore the correlation between changes in Prochlorococcus

abundance and changes in temperature measured as a function of
spatial distance. Operationally, this is done by convolving the SeaFlow
dataset63 with the normalized Haar wavelet and taking the correlation
between the two convolutions. A flat and high R2 curve would suggest
that temperature has predictive power across spatial scales. However,
the high R2 values associated with the bulk dataset (and the Flombaum
model) are only reached at large spatial scales. The continuous ramp in
R2 from 200-2000 km is caused as the convolution spreads informa-
tion from the sharp transitions across larger and larger spatial scales
(see Supplementary Fig. 10). This type of scale based analysis can be
done with any model to determine if its power persists across a
spectrum of spatial scales, or is caused by transitions between distinct
regions.

Discussion
Moving forward, we believe that the best predictions for the dis-
tribution of planktonic species like Prochlorococcus will eventually
come from models which formally integrate both statistical and
dynamical approaches. This combination has revolutionized weather
forecasting, and should transform species prediction in the sea. This
work takes a step in that direction by building an understanding of the
differing predictions of dynamical and statistical models for Pro-
chlorococcus. Observational data at different spatial-temporal scales
can be used in an analogous fashion to laboratory experiments for
testing the ability of organisms to grow and compete under different
conditions. One of the promises of machine learning methods is that
they can start with all of the data and fit a model which accurately
balances the effects of changes across these varying spatial-temporal
scales. Independent of how the model is produced, however, its effi-
cacy can be independently tested against the separate scales used to
construct it. As shownhere, these tests canbequite simple. Formarine
plankton the spatial-temporal scales of variability can be quite distinct,
spanning daily to monthly fluctuations in concentration to latitudinal
shifts from crossing niche boundaries. Themore scales a set of driving
variables is predictive at, the more likely it will be predictive in new
environments and in a changing climate.

Here, we focused on an SDM for Prochlorococcus14, demonstrating
that themodel and its dependent variables (light and temperature) do
not appear to maintain predictive power across both monthly
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fluctuations in concentration and fluctuations in the spatial-temporal
location of the spatial transitions. Where, then, does the Flombaum
model attain its predictive power at the global scale? The majority of
thismodel’s predictive power in the surfaceocean seems to come from
the large change in population between places where Prochlorococcus
is favored and places where it is not. This can be expressed by a two-
state model which incorporates the idea of a thermal viability tem-
perature, at a minimal cost of ∼15% in the variance of the residuals. In
terms of R2, both models perform equally in log-space. In linear space,
the original model performs marginally better, but when focusing on
themain latitudinal range of the species, neither model does well. The
R2 of the original model drops to ∼0.04 and for the two-state model
R2 ≈0 as the temperature is higher than the threshold in this region.
Considering that the observed, sharp transition in Prochlorococcus
abundance occurs across >15 °C in temperature, the Flombaum mod-
el’s predictions for the range increase in this species in a warming
world is best interpreted as an estimate for the increase in its maxi-
mally viable range. The actual range may often be set by other
drivers12,70,71. In places where Prochlorococcus is abundant, predictions
for changes in Prochlorococcus concentration by the Flombaummodel
do not appear well supported.

These results can be put into context with other efforts to gain a
more complete understanding of what sets the abundance patterns of
Prochlorococcus. From a mechanistic perspective, there are a plethora
of both top-down and bottom-up processes which can set the abun-
dance of the species. Bottom-up factors like nutrients, temperature
and light can directly influence the growth rates of the species which,
for example, grows much slower at lower temperatures41,72–74. These
slower growth rates provide a mechanistic rationale for including
temperature in statistical models. Top-down controls are also impor-
tant, with researchers implicating both grazer based12,70 and viral71

mechanisms to explain population shifts along transects in the North
Pacific. Time is also an important factor72. The seasonal cycle forces
large spatial oscillations in the boundaries of ecological regions in the
ocean57 and the poleward range of Prochlorococcus undergoes large
(~10 degree) observed latitudinal changes over the season70,75. The
temporal dynamics of sharp spatial transitions are likely one reason for
the 15 degree temperature spread we observe in their location. Toge-
ther, these results suggest that temperature sets the maximal range of
Prochlorococcus populations, but that the actual range is often set by
additional processes.

In termsof the surface populations of Prochlorococcus, our results
suggest that the statistical power of the Flombaum SDM is generated
by the large separation in parameter space between distinct popula-
tion states. These states exist in colder nutrient rich waters with low
Prochlorococcus abundances, and warmer nutrient poor waters with
high abundances. As the ocean warms and becomes more stratified,
waters are pushed from the cold, low abundance state to the warm,
high abundance state. This generates the range expansion predicted
both by the SDMand dynamicalmodels. All model types agree that the
range of Prochlorococcus will increase in a warming world, providing
additional support for this prediction. However, predicted increases in
abundance within the warm, low-nutrient, regime14,15 appear hard to
justify. We are left with the working hypothesis put forth by some
statistical models27 and by dynamical models10 that concentrations
of Prochlorococcus will decrease in the gyres as the planet warms.
Certainly, complex feedbacks between temperature and nutrient
cycles could lead to different predictions59 but further work is
required. The prediction of decreasing abundance inside the
species’ range should be tested with further experimental and mod-
eling efforts. However, there is no evidence that the population will
increase.

Machine learning methods and models are set to revolutionize
our ability to predict the evolution of plankton communities by
incorporating the effects of a high diversity of sparse observations.

Critical in this development is a parallel effort to simply and effectively
test their predictions. Differences between model predictions and
measurements can be thought about in terms of ‘pattern errors’ and
‘magnitude errors’. Here, we demonstrate the importance of effec-
tively splitting errors between their ‘pattern’ and ‘magnitude’ compo-
nents as they contain different information. For Prochlorococcus, this
was straightforward as a two-state, patternonlymodel fit the data well.
We were thus able to conclude that the Flombaum model predicts
range, but not concentration, and harmonize the predictions of cur-
rent statistical and dynamical models for this species. Not all plankton
prediction problems are this straightforward. Our conclusions were
backed by a time series analysis, an analysis of the predictability of
sharp spatial transitions, and a calculation as to the correlation struc-
ture of changes in Prochlorococcus and changes in temperature as a
function of spatial scale. If temperature had maintained predictive
power across spatial-temporal scales, we would have strong evidence
that increasing temperature would lead to an increase in concentra-
tions. For Prochlorococcus, this was not the case. However, we are
hopeful that testing SDMs across spatial-temporal scales in this way
will help find the models which are predictive in a changing sea. We
suggest thatmodels of this type need todemonstrate predictive power
not only in distinct ocean basins, but across multiple distinct spatial-
temporal scales before being extended to new environments and into
a future climate.

Methods
Datasets
Our analysis included four datasets: the Flombaum dataset (the origi-
nal dataset fromwhich the Flombaummodelwas created14), theHawaii
Ocean Time-series (HOT)48,60, the Atlantic Meridional Transect62,76, and
the SeaFlow dataset63. To simplify the analysis, we only included data
taken near the sea surface, with a depth of atmost 50meters. No other
measurements were excluded from the datasets.

The Flombaum, Atlantic Meridional Transect, and SeaFlow data-
sets were downloaded from the Simons CMAP project using the pyc-
map API (https://simonscmap.com/). The HOT dataset was
downloaded from Hawaii Ocean Time-series Data Organization &
Graphical System (data from http://hahana.soest.hawaii.edu/hot/hot-
dogs/).

The measurements of Prochlorococcus abundance were coloca-
lized with temperature and PAR measurements from datasets pro-
vided by CMAP. The temperature dataset was the GHRSST Level 4
AVHRR_OI Global Blended Sea Surface Temperature Analysis (GDS
version 2) fromNCEI, and the PAR dataset was theMODIS PAR dataset.
Each Prochlorococcus measurement in the Flombaum dataset was
associated with the nearest temperature and PAR measurement made
on the same day. Temperature was colocalized to within ± 0.25°
(28 km), and PAR was colocalized to within 9 km. Some PAR mea-
surements were not available on certain days; those measurements
were not used. The HOT dataset included temperature and PAR data,
so no colocalization was necessary. Following the methods used by
Flombaum,we accounted for the attenuationof light inwater using the
K490 attenuation coefficient. In the regions covered by the Flombaum
dataset, we used a constant PAR attenuation coefficient77 of k = 0.1m−1.
As our analysis focused on the surface ocean, this attenuation did not
make a significant difference in any of our results. For the scaling
analysis of SeaFlow data, temperature and abundance were down-
loaded directly from the links included in63.

Time series analysis
To compute the direct correlations between temperature, PAR, and
Prochlorococcus in HOT, we computed the average value of each
variable (<50 meters depth) over each cruise (although many cruises
only took one measurement). Each cruise was identified by an ID
number in the HOT database, which allowed linking of various
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measurements taken during the same cruise. The variance between
measurements taken during the same cruise suggest a relative uncer-
tainty of <1% in the measured temperature and PAR, and about 10% in
the measured Prochlorococcus concentration. We treated data from
each cruise (data taken over a few days) as individual data points.

To find the correlation between shifts in temperature, PAR, and
Prochlorococcus, we sorted the cruises into bins based on themonth in
which they occurred. For each month represented in the dataset, we
averaged the mean temperature, PAR, and Prochlorococcus over each
cruise in that month. For each pair of consecutive months that were
both represented among the cruises (there were several months in
which no cruises occurred), we computed the differences in the
average values of temperature, PAR, and Prochlorococcus. After
applying these criteria, there were 123 pairs of consecutive months,
whichare represented inFig. 3. The colocalization scheme is illustrated
in Fig. 1d–f.

Finding transitions using wavelets
We were particularly interested in locations where the population of
Prochlorococcus abruptly changed, and sustained this change. To do
this, we took the datapoints along a cruise and linearly interpolated
them to form a continuous function f (of Prochlorococcus population
as a function of distance). We then convolved fwith the Haar function,
defined below:

HαðtÞ=

0 t < � α,

�1 �α ≤ t <0,

1 0 ≤ t <α,

0 t ≥α:

8
>>><

>>>:

: ð1Þ

The convolution Hα ∗ f measures the change in f sustained over the
interval [t − α, t + α]. By testing the number of peaks over each cruise as
α varied, we found that the number of peaks sharply fell as α increased
from 0, but began to stabilize before α = 150km. A lower value of α
would detect more transitions, but these would be less significant; a
greater value of α on the other hand may not distinguish two distinct
transitions. Several examples are given in Supplementary Fig. 6.
Transitions are seen as peaks and valleys as a function of both the
wavelet width α and the distance along a cruise. Large stable transi-
tions are seen as the peaks which persist independent of the size of
the wavelet. Crucially, the location of these transitions is not sensitive
to the choice of α as seen by the vertical stripes in Supplemen-
tary Fig. 6.

We therefore took α = 150 km to be the standard wavelet
for detecting transitions within each cruise and applied a low-level
filter with threshold C = 10 cells/mL/km to remove small peaks.
We considered a local minimum/maximum at t to represent a transi-
tion if ∣Hα ∗ f(t)∣ ≥C, and the spatial distance between transitions was
>100 km. This analysis yielded 31 transitions across 41 cruises. Using
the time and geographical location of the transitions, we colocalized
the set of transitions with temperature and PAR using the GHRSST and
MODIS PARdatasets using the built in Python libraries in SimonsCMAP
(API from http://www.simonscmap.com).

Building the two-state model
The two-state model was constructed in direct comparison with the
Flombaum model, to be tested on the Flombaum dataset. To ignore
effects from depth on variables such as PAR and temperature, we
removed all data points with depth of >50meters. In order to compare
the results directly, we filtered the remaining data points by only using
those which had temperature, PAR, and Prochlorococcus measure-
ments. The two-state model was then constructed to return a constant
value C if the temperature T ≥ 13, and 0 if T < 13. We chose C to mini-
mize the variance of the residuals, when comparing the results from
the two-state model and the measured population of Prochlorococcus

in the Flombaum dataset. We found C ≈ 42000 cells/mL so that

CðTÞ= 42000 T ≥ 13,

0 T < 13:

�

ð2Þ

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this study is publicly available through the Simons
Foundation CMAP (http://www.simonscmap.com, pycmap API avail-
able at https://github.com/simonscmap/pycmap/archive/master.zip),
the listed resources in the Methods section and the Supplementary
Information. Data downloadable from the Simons CMAP project using
the pycmap API include: the Flombaum dataset (the original dataset
from which the Flombaum model was created14); the Atlantic Mer-
idional Transect62,76; the SeaFlow dataset63; the GHRSST Level 4
AVHRR_OI Global Blended Sea Surface Temperature Analysis (GDS
version 2) from NCEI78, and the PAR dataset (MODIS PAR dataset68).
The full SeaFlow abundance and temperature dataset external to
CMAP is https://doi.org/10.5281/zenodo.3994953, direct download
link from zenodo https://zenodo.org/record/3994953/files/SeaFlow_
allstats_v.13_2020-08-21.zip?download=1. The HOT dataset was down-
loaded from Hawaii Ocean Time-series Data Organization & Graphical
System (data from http://hahana.soest.hawaii.edu/hot/hot-dogs/).

Code availability
Code central to the manuscript can be found as part of the Supple-
mentary Information as Supplementary Code.
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