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FACTORIZATION OF MEASURES AND APPLICATIONS TO THE WEAK

GOLDFELD CONJECTURE

MERRICK CAI

Abstract. Extending Gross’s result, we prove that a certain factorizaton of measures holds
for all p and any finite even Dirichlet character χ of any conductor, rather than only for split
p and χ with conductor a power of p. Using this generalization, we find lower bounds on the
proportion of imaginary quadratic fields K for which (under certain assumptions on the elliptic
curve) a chosen quadratic twist of an elliptic curve E over K has rank 1. We also find lower and
upper bounds for the proportion of quadratic twists with rank 1 when we vary D, the factor
we twist by, under the assumption that ω (the prime factor counting function) is sufficiently
close to a Gaussian distribution, as described by Erdös-Kac. We apply similar methods to
cubic twists, and then derive analogous lower bounds for the proportion of imaginary quadratic
fields for which a sextic twist has rank 1. Lastly, for elliptic curves over Q satisfying certain
assumptions, we find positive lower bounds on the proportion of quadratic twists (over Q) which
have rank 0 and rank 1, which yields examples of elliptic curves satisfying the weak Goldfeld
conjecture.
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1. Introduction

1.1. Algebraic and analytic rank. Let E be an elliptic curve over Q. The Q-points of E
form an abelian group E(Q) called the Mordell-Weil group. Mordell’s theorem states that E(Q)
is finitely generated, and thus the rank of E(Q) is a well-defined, nonnegative integer. We call
the rank of E(Q) the algebraic rank of E, and denote it as ralg(E).

However, the algebraic rank is rather difficult to handle. Instead, we may attach the following
L-function to the elliptic curve E/Q:

L(E/Q, s) =
∏

p

Lp(E/Q, s),

where

Lp(E/Q, s) =











(1− ap · p−s + p1−2s)
−1

p has good reduction,

(1± ap · p−s)−1
p has multiplicative reduction,

1 p has additive reduction,

and ap = p + 1 − |E(Fp)| is the trace of the Frobenius element associated to p. (In the
multiplicative reduction case, the type of reduction determines the sign of the plus/minus.)
This L-function satisfies a functional equation relating its values at s and 2 − s, and thus its
order of vanishing at s = 1 is of interest. We call the order of vanishing of L(E/Q, s) at s = 1
the analytic rank of E, and denote it as ran(E).

Although the notions of analytic and algebraic rank may seem unrelated, they are not. The
famous Birch and Swinnerton-Dyer conjecture [BSD65] posits that they are in fact equal.

Conjecture 1.1 (Birch and Swinnerton-Dyer). The algebraic rank is the same as the analytic
rank: ralg(E) = ran(E).

The BSD conjecture is still wide open, although significant advances have been made. Some
of the strongest known results are due to [TW95], [Wil95], [BCDT01], [GZ86], [Kol89], and
[Kol07], and they relate the algebraic and analytic ranks in low rank cases.

Theorem 1.2. If ran(E) ∈ {0, 1}, then ran(E) = ralg(E).

However, it’s still unproven as to whether ralg(E) ∈ {0, 1} implies that ralg(E) = ran(E).

1.2. Goldfeld’s conjecture. Elliptic curves can be ordered by a property called height. This
property is useful when studying statistics of elliptic curves, since it allows us to formalize
the notion of an average: to measure the average of a quantity over all elliptic curves, we can
calculate the average over the finitely many elliptic curves with height at most X, and then take
a limit as X →∞. The analytic rank of an elliptic curve is one particularly important property
that can be studied in this way. Originating from [Gol79] and [KS99], it is widely believed that
among all elliptic curves over Q, the elliptic curves with analytic rank 0 or 1 should each have
density 50%, while elliptic curves with analytic rank greater than 1 should have density 0.
Recent developments by [BS15], [BSZ14], [BS13], and others have placed increasingly tighter
bounds on the average, putting it closer and closer to the conjectured value of 0.5; for example,
the average rank is bounded below by 0.2068 and bounded above by 0.885.

Understanding the average rank over all elliptic curves is rather difficult. We can instead
look at one particular family of elliptic curves: the quadratic twists ED of a fixed elliptic curve
E. In [Gol79], Goldfeld postulated that the average rank of a family of quadratic twists should
behave in the same way as the set of elliptic curves over Q.

Conjecture 1.3 (Goldfeld). Let E be an elliptic curve and let {ED} be the family of quadratic
twists of E as D varies over the set of fundamental domains. Then 50% of the ED have analytic
rank 0, 50% have analytic rank 1, and 0% have analytic rank greater than 1.
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However, Goldfeld’s conjecture is still very open. There is no elliptic curve which has been
shown to satisfy Goldfeld’s conjecture. We will instead study the following weaker version of
Goldfeld’s conjecture (see, for example, [KL19, Conjecture 1.2]).

Conjecture 1.4 (Weak Goldfeld). As in Conjecture 1.3, fix E and let {ED} be the family of
quadratic twists of E. A positive proportion of the ED have rank 0 and a positive proportion
of the ED have rank 1.

In the last section of this paper, we will prove a result which, given certain conditions on the
elliptic curve, guarantee that a positive proportion of its quadratic twists will have rank 0 and
1; in addition, we give lower bounds for these proportions.

1.3. Measures on profinite groups. We follow the exposition in [Gro80, §1]. Let p ∈ Z be a
prime, Zp the ring of p-adic integers, Qp the field of p-adic numbers, and Cp the algebraic closure
of Qp. Now let Dp be the ring of integral elements in Cp. For a commutative profinite group G,
we consider its completed group algebra over Dp, ΛG := Dp[[G]] = lim←−H⊂G open

Dp[G/H ]. The

elements of ΛG are called measures on G. We also define Λ′
G, the total ring of fractions of ΛG,

as the ring whose elements are α/β for α, β ∈ ΛG and β is not a zero-divisor.
We define a bilinear pairing between continuous functions G → Cp and measures in ΛG by

approximating f by locally constant functions and taking a limit, as in [Ser78]:

〈f, λ〉 =
∫

G

f dλ.

For λ = α/β ∈ Λ′
G, we extend this pairing by 〈f, λ〉 := 〈f, α〉/〈f, β〉. This construction is

well-defined since it does not depend on the representation of λ, and agrees with our previous
definition for λ ∈ ΛG.

Let K be an imaginary quadratic field. We will primarily consider the case where G =
Gal(K(µp∞)/Q) or G = Gal(K(µp∞)/Q)/σ where σ is complex conjugation, and f = χ is a
(continuous) character from G to D×

p .

1.4. Structure of the paper and main results. Let p be a prime, K = Q(
√
−C) an

imaginary quadratic field where p splits, and χ a continuous p-adic character of Gal(K(µp∞)/Q)
which is trivial on complex conjugation. Let χK be the restriction of χ to Gal(K(µp∞)/K),
ǫ the quadratic character modulo C, and ω the Teichmüller character. As in [Gro80], define
the measures λ1, λ2, λ3 by 〈χ, λ1〉 = Lp(0, χK), 〈χ, λ2〉 = Lp(0, χǫω), and 〈χ, λ3〉 = Lp(1, χ

−1).
Motivated by the classical factorization of L-series L(s, (χK)∞) = L(s, χ∞ǫ)L(s, χ∞), Gross
[Gro80, Theorem 3.1] derives the factorization of measures

λ1 = λ2 · λ3,
when p is split in K and χ is a finite even Dirichlet character whose conductor is a power of
p. In §2, we extend this result in Theorem 2.13 to all p (not just split p) and any finite even
Dirichlet character χ (with any conductor).

We then turn our attention to elliptic curves. In §3, we introduce assumptions on the elliptic
curve which will hold for the remainder of the paper. We will assume that E is residually
reducible modulo 3 (Assumption 3.1), and we will work with integersD and imaginary quadratic
fields K satisfying various divisibility and congruence conditions relating D, the conductor of
E, and the discriminant of K (Assumptions 3.2 and 3.3).

In §4, we discuss general congruences of L-series and Eisenstein series, especially those asso-
ciated with quadratic characters. We obtain some auxiliary results concerning the congruence
of certain modular forms with Eisenstein series, and calculate the Euler factor at p after p-
depleting (see §4.3).

In §5.1, we use the factorization in Theorem 2.13 to arrive at the two key technical results,
Theorem 5.6 and Theorem 5.7. Under Assumption 3.3 and the assumption that D satisfies the



4 MERRICK CAI

nonvanishing of a certain class number modulo 3 (for D > 0, we need 3 ∤ hQ(
√
−3D) and for

D < 0, we need 3 ∤ hQ(
√
D)), we find a lower bound on the proportion of imaginary quadratic

fields K for which ED/K has rank 1. In §5.2, we vary D instead. Assuming that ω(n) is
sufficiently close to a Gaussian distribution, we find bounds on the proportion of D such that
ED/K has rank 1; these are given in Theorem 5.11.

In §6, we address cubic and sextic twists. In §6.1, we obtain results similar to §4 but for cubic
twists. Since sextic twists are a composition of a cubic twist and a quadratic twist, we apply
our results from §5.1 to obtain similar results on sextic twists in §6.2. The results, paralleling
Theorem 5.6 and Theorem 5.7, are given by Theorem 6.6 and Theorem 6.7.

Finally, in §7, we positive lower bounds on the proportion ofD for which ED/Q has rank 0 and
1, under similar assumptions. Given the assumptions before, plus the additional assumption

that 3 ∤ N := cond(E), in Theorem 7.1 we find that ED/Q has rank 0 for at least φ(N)
4N

of all such

D, and rank 1 for at least φ(N)
4N

of all such D. As an easy corollary, we conclude Conjecture 1.4
for certain elliptic curves.

Acknowledgements. The author would like to thank Daniel Kriz for supervising this project,
mentoring the author, and providing much needed guidance. The author also thanks Jonathan
Love and Professor Andrew Sutherland for many helpful discussions and feedback.

2. Factorization of measures

We follow the notation in [Gro80]. Let p be a prime, K = Q(
√
−C) an imaginary quadratic

field where p splits, χ a finite even Dirichlet character on Gal(K(µp∞)/Q), χK the restriction

of χ to Gal(K(µp∞)/K), and χ∞ the composition of χ with some fixed injection Q →֒ C. Let
ǫ be the quadratic character modulo C and ω the Teichmüller character. We define λ1, λ2, λ3
as in [Gro80, p. 92], and obtain the formulas 〈χ, λ1〉 = Lp(0, χK), 〈χ, λ2〉 = Lp(0, χǫω), and
〈χ, λ3〉 = Lp(1, χ

−1), as in [Gro80, p. 93].

2.1. Dirichlet characters with conductors a prime power. We start with the classical
factorization L(s, (χK)∞) = L(s, χ∞ǫ)L(s, χ∞) and the functional equation for L(s, χ):

L(s, χ) = L(1− s, χ)Γ
(

1−s+a
2

)

Γ
(

s+a
2

)

(

k

π

)
1
2
−s

τ(χ)

ia
√
k
,

where Γ is the gamma function, k is the conductor of χ, τ =
∑k

n=1 χ(n)e
2πin/k is the Gauss

sum, and a = 0 if χ(−1) = 1 while a = 1 if χ(−1) = −1.
Proposition 2.1. L′(0, (χK)∞) = L(0, χ∞ǫ)L

′(0, χ∞).

Proof. By differentiating,

L′(s, (χK)∞) = L′(s, χ∞ǫ)L(s, χ∞) + L(s, χ∞ǫ)L
′(s, χ∞).

Setting s = 0 yields

L′(0, (χK)∞) = L′(0, χ∞ǫ)L(0, χ∞) + L(0, χ∞ǫ)L
′(0, χ∞).

But since χ∞(−1) = 1 =⇒ a = 0, we have

L(0, χ∞) = L(1, χ∞)
Γ
(

1
2

)

Γ(0)

(

k

π

)1/2
τ(χ)√
k
.

Notably, 1
Γ(0)

= 0, which concludes the result. �

The explicit formulas of Dirichlet and Kronecker are as follows:

• L′(0, (χK)∞) = − 1
6pr

∑

A χ∞(a) logF+(a)∞ [Gro80, p. 91],
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• L(0, χ) = −
∑f

a=1
a
f
χ(a) = −B1,χ for f the conductor of χ [Gro80, p. 88],

• L(1, χ∞) = −g(χ∞)
∑

A χ
−1
∞ (a) logC+(a)∞ [Gro80, p. 91] where g(χ) = 1

f

∑f
a=1 χ(a)e

2πia/f

for f the conductor of χ [Gro80, p. 88].

Proposition 2.2. L′(0, χ∞) = −g(χ∞)
2

L(1, χ∞).

Proof. By differentiating, we have

L′(s, χ) =L′(1− s, χ)Γ
(

1−s+a
2

)

Γ
(

s+a
2

)

(

k

π

)
1
2
−s

g(χ)

ia
√
k
,

− 1

2
L(1− s, χ)Γ

′ (1−s+a
2

)

Γ
(

s+a
2

)

(

k

π

)
1
2
−s

g(χ)

ia
√
k
,

− Γ′ ( s+a
2

)

2
L(1− s, χ)Γ

(

1−s+a
2

)

Γ
(

s+a
2

)2

(

k

π

)
1
2
−s

g(χ)

ia
√
k
,

− log(k/π)L(1− s, χ)Γ
(

1−s+a
2

)

Γ
(

s+a
2

)

(

k

π

)− 1
2
−s

g(χ)

ia
√
k
.

Since χ∞(−1) = 1, we have a = 0. Setting s = 0 yields

L′(0, χ∞) =L′(1, χ∞)
Γ
(

1
2

)

Γ(0)

(

k

π

)
1
2 g(χ∞)√

k
,

− 1

2
L(1, χ∞)

Γ′ (1
2

)

Γ(0)

(

k

π

)
1
2 g(χ∞)√

k
,

− Γ′(0)

2
L(1, χ∞)

Γ
(

1
2

)

Γ(0)2

(

k

π

)
1
2 g(χ∞)√

k
,

− log(k/π)L(1, χ∞)
Γ
(

1
2

)

Γ(0)

(

k

π

)− 1
2 g(χ∞)√

k
.

Note that the Laurent series of Γ(s) is Γ(s) = 1
s
+ a0 + a1s+ . . . which implies that

1

Γ(0)
= 0,

Γ′(0)

Γ(0)2
=

( −1
s2

+ a1 + . . .
1
s2
+ 2a0

s
+ . . .

)
∣

∣

∣

∣

s=0

= −1.

Furthermore, Γ(1/2) =
√
π. Combining these, we find that three of the terms cancel, which

yields L′(0, χ∞) = −g(χ∞)
2

L(1, χ∞). �

Using the identity L(1, χ∞) = −g(χ∞)
∑

A χ∞(a) logC+(a)∞, and the fact that τ(χ∞)g(χ∞) =
τ(χ∞)τ(χ∞)

f
= |

√
f |2
f

= 1, we find that

L′(0, χ∞) =
1

2

∑

A

χ∞(a) logC+(a)∞.

Now, combining these with the fact that L(0, χ∞ǫ) = −B1,χ∞ǫ, we find that

− 1

6pr

∑

A

χ∞(a) logF+(a)∞ = (−B1,χ∞ǫ)

(

−1
2

∑

A

χ∞(a) logC+(a)∞

)

,

or equivalently
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Proposition 2.3. The equation

−3prB1,χ∞ǫ

∑

A

χ∞(a) logC+(a)∞ =
∑

A

χ∞(a) logF+(a)∞

holds for all p.

Remark. This is [Gro80, (3.5)], but he only proves it for split p.

Now recall that C+(a)∞ and F+(a)∞ are p-units in the field Mpr = Q
(

cos 2π
pr

)

. Let E(Mpr)

denote the group of all p-units. It is a finitely generated subgroup of R×. Now consider
the complex vector space C ⊗Z E(Mpr). This is isomorphic to the regular representation of
A = Gal(Mpr/Q). Now note that for all σ ∈ A, due to transport of structure, we have that

σ

(

∑

A

χ∞(a)⊗Z C
+(a)∞

)

=
∑

A

χ∞(a)⊗Z C
+(σa)∞ = χ−1

∞ (σ)
∑

A

χ∞(σa)⊗Z C
+(σa)∞,

= χ−1
∞ (σ)

(

∑

A

χ∞(a)⊗Z C
+(a)∞

)

,

σ

(

∑

A

χ∞(a)⊗Z F
+(a)∞

)

=
∑

A

χ∞(a)⊗Z F
+(σa)∞ = χ−1

∞ (σ)
∑

A

χ∞(σa)⊗Z F
+(σa)∞,

= χ−1
∞ (σ)

(

∑

A

χ∞(a)⊗Z F
+(a)∞

)

.

This implies that both
∑

A χ∞(a)⊗ZC
+(a)∞ and

∑

A χ∞(a)⊗ZF
+(a)∞ lie in the χ−1

∞ -eigenspace
of C⊗Z E(Mpr), which is one-dimensional. Therefore

c̃
∑

A

χ∞(a)⊗Z C
+(a)∞ =

∑

A

χ∞(a)⊗Z F
+(a)∞

for some c̃ ∈ C. Consider the map

γ : C⊗Z E(Mpr)→ C,

defined by γ(c⊗ a) = c log a. This map is clearly C-linear, so

γ(c̃
∑

A

χ∞(a)⊗Z C
+(a)∞) = c̃γ(

∑

A

χ∞(a)⊗Z C
+(a)∞).

Applying γ to both sides of c̃
∑

A χ∞(a)⊗Z C
+(a)∞ =

∑

A χ∞(a)⊗Z F
+(a)∞ yields that

c̃ = −3prB1,χ∞ǫ.

In particular, note that E(Mpr) ⊂ Q. We can actually say that

Proposition 2.4. As elements of Q⊗Z E(Mpr), we have

−3prB1,χ∞ǫ

∑

A

χ∞(a)⊗Z C
+(a)∞ =

∑

A

χ∞(a)⊗Z F
+(a)∞.

Now take some ϕ : Q −֒→ Cp. Applying (1 ⊗Z logp) ◦ ϕ to both sides, we find the following
equality in Cp:

−3prB1,χǫ

∑

A

χ(a) logpC
+(a)p =

∑

A

χ(a) logp F
+(a)p.
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Now consider the explicit formulas provided by [Gro80, p. 93]:

Lp(0, χK) = −
1

3pr
g(χ−1)

∑

A

χ(a) logp F
+(a)p,

Lp(0, χǫω) = −B1,χǫ,

Lp(1, χ
−1) = −g(χ−1)

∑

A

χ(a) logp C
+(a)p.

Putting these together yields the p-adic identity

Proposition 2.5.

Lp(0, χK) = Lp(0, χǫω)Lp(1, χ
−1).

Now, following [Gro80, p. 93], there exist measures λ2, λ3 such that for any finite even
Dirichlet character χ of conductor pr, we have

〈χ, λ2〉 = Lp(0, χǫω),

〈χ, λ3〉 = Lp(1, χ
−1).

Now define a measure λ1 given by

〈χ, λ1〉 = Lp(0, χK).

Then we have the equality
〈χ, λ1〉 = 〈χ, λ2〉〈χ, λ3〉

for all finite even Dirichlet characters χ with conductor pr. Thus we have that

Theorem 2.6. λ1 = λ2 · λ3.
2.2. Generalization to conductor not a prime power. We will now work more generally
and extend to the remaining cases. We fix f to be some positive integer with at least two distinct
prime divisors. We again start with the classical factorization L(s, (χK)∞) = L(s, χ∞ǫ)L(s, χ∞)
and the functional equation for L(s, χ):

L(s, χ) = L(1 − s, χ)Γ
(

1−s+a
2

)

Γ
(

s+a
2

)

(

f

π

)
1
2
−s

τ(χ)

ia
√
f
,

where Γ is the gamma function, f is the conductor of χ, τ =
∑f

n=1 χ(n)e
2πin/f is the Gauss

sum, and a = 0 if χ(−1) = 1 while a = 1 if χ(−1) = −1.
Proposition 2.7. L′(0, (χK)∞) = L(0, χ∞ǫ)L

′(0, χ∞).

Proof. By differentiating,

L′(s, (χK)∞) = L′(s, χ∞ǫ)L(s, χ∞) + L(s, χ∞ǫ)L
′(s, χ∞).

Setting s = 0 yields

L′(0, (χK)∞) = L′(0, χ∞ǫ)L(0, χ∞) + L(0, χ∞ǫ)L
′(0, χ∞).

But since χ∞(−1) = 1 =⇒ a = 0, we have

L(0, χ∞) = L(1, χ∞)
Γ
(

1
2

)

Γ(0)

(

f

π

)1/2
τ(χ)√
f
.

Since 1
Γ(0)

= 0, which concludes the result. �

We have the following explicit formulas:
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• L(0, χ) = −
∑f

a=1
a
f
χ(a) = −B1,χ [Gro80, p. 88],

• L(1, χ∞) = − τ(χ∞)
f

∑

A χ
−1
∞ (a) logC+(a)∞ [Gro80, p. 88] (note that this is for general

conductors f),
• L′(0, χ) = − 1

6fw(f)

∑

c∈C χ(c) log |E(c)| [Sta77, p. 281], where χ is a ray class character

modulo f, w(f) is the number of roots of unity equivalent to 1 mod f, and f is the
conductor of χ.

Note that Cl(f) = (Z/fZ)×, but A = Gal(Q(cos 2π
f
)/Q) = (Z/fZ)×/± 1.

Proposition 2.8. L′(0, χ∞) = −1
2

∑

A χ∞(a) logC+(a)∞.

Proof. First note that the classical factorization (with value a = 0) yields

L(s, χ∞)Γ(s/2) = L(1− s, χ−1
∞ )Γ((1− s)/2)

(

f

π

)
1
2
−s
τ(χ∞)√

f
.

In particular, consider the left hand side’s power series expansion around s = 0: although
L(s, χ∞) vanishes at s = 0, Γ(0) has a pole of order 1. But since the residue of Γ(s/2) is 2, we
have that

2L′(0, χ∞) = L(1, χ−1
∞ )Γ(1/2)

√

f
√

1/π
τ(χ∞)√

f
= τ(χ∞)L(1, χ−1

∞ ).

Now using Gross’s formula, we find that

L′(0, χ∞) = −1
2

∑

A

χ∞(a) logC+(a).

�

Proposition 2.9. L′(0, (χK)∞) = − 1
6f

∑

A χ(a) logF
+(a).

Proof. Note that we have a quotient homomorphism between the ray class group C modulo f,
isomorphic to (Z/fZ)×, with A = Gal(K/Q) = (Z/fZ)×/± 1. Furthermore, w(f) = 1 since K
is totally real. Then [Sta77] gives the result

L′(0, (χK)∞) = − 1

6f

∑

C
χ∞(c) log |E(c)|.

But note that
|E(c)|2 = E(c)E(−c) = Ff(a)Ff (a) = Ff (a)Ff (−a)

=⇒ logF+(a) = logFf (a)Ff (−a) = logE(a)E(a) = log |E(a)|+ log |E(−a)|,
so we have

L′(0, (χK)∞) = − 1

6f

∑

A

χ∞(a) logF+(a).

�

Now, combining these with the fact that L(0, χ∞ǫ) = −B1,χ∞ǫ, we find that

− 1

6f

∑

A

χ∞(a) logF+(a)∞ = (−B1,χ∞ǫ)

(

−1
2

∑

A

χ∞(a) logC+(a)∞

)

,

or equivalently

Proposition 2.10. The equation

−3fB1,χ∞ǫ

∑

A

χ∞(a) logC+(a)∞ =
∑

A

χ∞(a) logF+(a)∞

holds for all f .
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Remark. This is [Gro80, (3.5)], but he only proves it for split p and f = pr. Note that χ∞
depends on f .

Now note that C+(a)∞ and F+(a)∞ are units in the field Mf = Q
(

cos 2π
f

)

. (In particular,

∏

a∈(Z/fZ)×/±1

(1− e2πia/f ) = Φf (1) = 1,

which holds whenever f has at least two distinct prime divisors.) Let E(Mf ) denote the group
of all units. It is a finitely generated subgroup of R× of rank |A|−1, by Dirichlet’s unit theorem.
Now consider the complex vector space C⊗Z E(Mf ). This is isomorphic to the quotient of the
regular representation of A = Gal(Mf/Q) by the subspace spanned by (1, 1, 1, . . . ). For all
σ ∈ A, due to transport of structure, we have that

σ

(

∑

A

χ∞(a)⊗Z C
+(a)∞

)

=
∑

A

χ∞(a)⊗Z C
+(σa)∞ = χ−1

∞ (σ)
∑

A

χ∞(σa)⊗Z C
+(σa)∞,

= χ−1
∞ (σ)

(

∑

A

χ∞(a)⊗Z C
+(a)∞

)

,

σ

(

∑

A

χ∞(a)⊗Z F
+(a)∞

)

=
∑

A

χ∞(a)⊗Z F
+(σa)∞ = χ−1

∞ (σ)
∑

A

χ∞(σa)⊗Z F
+(σa)∞,

= χ−1
∞ (σ)

(

∑

A

χ∞(a)⊗Z F
+(a)∞

)

.

This implies that both
∑

A χ∞(a)⊗ZC
+(a)∞ and

∑

A χ∞(a)⊗ZF
+(a)∞ lie in the χ−1

∞ -eigenspace
of C⊗Z E(Mf), which is one-dimensional since A is abelian. Therefore

c̃
∑

A

χ∞(a)⊗Z C
+(a)∞ =

∑

A

χ∞(a)⊗Z F
+(a)∞

for some c̃ ∈ C. Consider the map

γ : C⊗Z E(Mf )→ C,

defined by γ(c⊗ a) = c log a. This map is clearly C-linear, so

γ(c̃
∑

A

χ∞(a)⊗Z C
+(a)∞) = c̃γ(

∑

A

χ∞(a)⊗Z C
+(a)∞).

Applying γ to both sides of c̃
∑

A χ∞(a)⊗Z C
+(a)∞ =

∑

A χ∞(a)⊗Z F
+(a)∞ yields that

c̃ = −3fB1,χ∞ǫ.

In particular, note that E(Mf ) ⊂ Q. We can actually say that

Proposition 2.11. As elements of Q⊗Z E(Mf ), we have

−3fB1,χ∞ǫ

∑

A

χ∞(a)⊗Z C
+(a)∞ =

∑

A

χ∞(a)⊗Z F
+(a)∞.

Now take some ϕ : Q −֒→ Cp. Applying (1 ⊗Z logp) ◦ ϕ to both sides, we find the following
equality in Cp:

−3fB1,χǫ

∑

A

χ(a) logpC
+(a)p =

∑

A

χ(a) logp F
+(a)p.
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Now consider the explicit formulas provided by [Gro80, p. 93]:

Lp(0, χK) = −
1

3f
g(χ−1)

∑

A

χ(a) logp F
+(a)p,

Lp(0, χǫω) = −B1,χǫ,

Lp(1, χ
−1) = −g(χ−1)

∑

A

χ(a) logp C
+(a)p.

Putting these together yields the p-adic identity

Proposition 2.12.

Lp(0, χK) = Lp(0, χǫω)Lp(1, χ
−1).

Now, following [Gro80, p. 93] there exist measures λ2, λ3 such that for any finite even Dirichlet
character χ of conductor f , we have

〈χ, λ2〉 = Lp(0, χǫω),

〈χ, λ3〉 = Lp(1, χ
−1).

Now define a measure λ1 given by

〈χ, λ1〉 = Lp(0, χK).

Then we have the equality
〈χ, λ1〉 = 〈χ, λ2〉〈χ, λ3〉

for all finite even Dirichlet characters χ with conductor f . Combining with Theorem 2.6, we
have the following factorization:

Theorem 2.13. For any finite even Dirichlet character χ, with 〈χ, λ1〉 = Lp(0, χK), 〈χ, λ2〉 =
Lp(0, χǫω), and 〈χ, λ3〉 = Lp(1, χ

−1), we have that λ1 = λ2 · λ3.

3. Assumptions and conventions

For the remainder of the article, we fix several assumptions. We will restate them throughout
the article, but organize them here for convenience. We will letK denote an imaginary quadratic
field and ∆K the discriminant of K. We will let E/F denote an elliptic curve over a number
field F (usually either K or Q) with conductor cond(E) = N . Let f(q) be the modular form
associated to E. We assume that E will be residually reducible modulo 3:

Assumption 3.1 (Residually reducible). All elliptic curves E will be residually reducible modulo
3. In other words, the 3-adic Galois representation ρ3 : Gal(F/F ) → Aut(T3(E)) ∼= GL2(Z3)
reduced modulo 3 to ρ3 : Gal(F/F )→ GL2(F3) is reducible.

We will also require that E satisfies the Heegner hypothesis relative to K in many situations,
as found in [BCD+14, p. 8]:

Assumption 3.2 (Heegner hypothesis). For every prime ℓ|N , then ∆K is a quadratic residue
modulo ℓ.

We will focus a great deal of attention to quadratic twists of E/F . Let E be an elliptic curve

given by y2 = x3 + ax + b. Then for D′ ∈ F such that F (
√
D′) ) F , the quadratic twist

of E/F by D′ is given by D′y2 = x3 + ax + b, and denoted E(D′) with modular form f (D′)(q).
We will primarily focus on D′ ∈ Z. We will later see that when E/F is residually reducible,
then f (D′)(q) ≡ EχD ,χD

2 (q) (mod 3) for some Eisenstein series E and integer D, and therefore
we will denote ED := E(D′).
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In a similar manner, we will denote Ed,3 the cubic twist of E/F by d, where the cubic twist
is given by y2 = x3 + c 7→ y2 = x3 + dc.

Finally, we will denote by Assumption 3.3 the following series of assumptions on (N,D).

Assumption 3.3. We make the following assumptions:

• For all primes ℓ > 3, if vℓ(N) = 1, then ℓ ≡ 2 (mod 3),
• gcd(N,D) = 1,
• 2 ∤ ND,
• v3(N) 6= 1.

4. Congruences modulo p

4.1. Congruences of L-series and Eisenstein series. Let

f(q) =
∑

n≥0

anq
n

be the modular form attached to an elliptic curve E. Let the 3-adic Galois representation be
ρE ; we will assume that ρE is always residually reducible modulo 3. Let

Eλ,ψ
2 (q) = L(1− k, χ) +

∑

n

σλ,ψ(n)qn

be an Eisenstein series, where

σλ,ψ(n) =
∑

d|n
λ(n/d)ψ(d)d.

Proposition 4.1. The Galois representation of Eψ,ψ
2 is isomorphic up to semisimplification to

ψ ⊕ ψχ where χ is the cyclotomic character.

Proof. The Brauer-Nesbitt theorem implies that up to semisimplication, ρE2 is determined by its
characteristic polynomial, or equivalently, trace and determinant. Furthermore, the Cebotarev
density function implies that the Frobenius elements are dense in the Galois group. Since ρE2

is a continuous function, it suffices to check that trace and determinant match on the Frobenius
elements ℓ for each prime. We have

tr(ℓ) = [qℓ]Eψ,ψ
2 (q) = σψ,ψ(ℓ) = ψ(ℓ) + ψ(ℓ)ℓ,

which confirms that the trace function matches. The determinant yields

det(ℓ) = ℓ = ψ(ℓ)ψ(ℓ)χ(ℓ),

and both functions match. �

Proposition 4.2. Suppose ρE is residually reducible, i.e. the representation mod 3 is iso-
morphic to χ1 ⊕ χ2 up to semisimplification. Then ρE ∼= ρEχM ,χM

2
(mod 3), where EχM ,χM

2 is

the Eisenstein series with χM a quadratic character, and χ1 = χM and χ2 = χMχ for χ the
cyclotomic character. Furthermore, f(q) ≡ EχM ,χM

2 (q) (mod 3).

Proof. Since F×
3
∼= {±1}, it follows that χ1, χ2 are quadratic characters. By Brauer-Nesbitt, it

suffices to check that the trace and determinant functions agree on Frobenius elements, which
are dense in the Galois group by the Cebotarev density theorem. Checking the determinant
function, we have that

χ(ℓ) = ℓ = det(ℓ) = χ1(ℓ)χ2(ℓ).

Thus

χ2 = χ−1
1 χ = χ1χ.
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Letting χ1 = χM for some quadratic character modulo M , we have that

χ1 = χM , χ2 = χMχ.

Now, the trace functions yield that

aℓ = χM(ℓ)+χM(ℓ)χ(ℓ) = χM(ℓ)+χM(ℓ)ℓ =
∑

d|ℓ
χM(ℓ/d)χM(ℓ)d = σχM ,χM (ℓ) = [qℓ]EχM ,χM

2 (q).

Since the coefficients of the two modular forms agree on prime indices, they agree on all non-
constant terms. Thus f(q) − EχM ,χM

2 (q) ≡ c (mod 3), where the left hand side is a modular
form of weight 2, and thus the right hand side must also be a modular form of weight 2. By
[Ser73], c = 0, and we have that f(q) ≡ EχM ,χM

2 (q) (mod 3). �

4.2. Congruences of quadratic twists. Consider some arbitrary squarefree D′ ∈ Z. We
will study the quadratic twist of f by D′ and write it as f (D′)(q), with the elliptic curve
E := y2 = x3+ax+b becoming E(D′) := D′y2 = x3+ax+b. We will assume that ρE is residually
reducible. By Proposition 4.2, we have f(q) ≡ EχM ,χM

2 (q) (mod 3) for some quadratic character
χM . Since fD′(q) =

∑

n≥0 χD′(n)anq
n, it follows that fD′(q) ≡ E

χMχD′ ,χMχD′

2 (q) (mod 3). Since
χD′ is again a quadratic character, we may write χD = χMχD′ for some squarefree D ∈ Z. Thus
every quadratic twist of an elliptic curve whose Galois representation is residually reducible
mod 3 is congruent to EχD ,χD

2 (q) modulo 3, where χD is some quadratic character. From now
on, we will write the quadratic twist of the elliptic curve E(D′) as ED and the associated modular
form as fD, where χD = χMχD′ .

4.3. Stabilizations. We follow [BDP+13] and describe the p-depletions/stabilizations. Let
f(q) =

∑

n anq
n be the modular form of an elliptic curve E/F . Then the p-depletion is given

by

f ♭(q) =
∑

p∤n

anq
n.

Suppose p is a good prime; then f ♭ = f |V U − UV , where U and V are given by [BDP+13,
p. 1085].

Let N be the conductor of E/F . If a prime ℓ2|N , then aℓ = 0, hence there is no need to
change the value through ℓ-depletion. If a prime ℓ|N with vℓ(N) = 1, then aℓ = ±1, so we may
use 1∓ Vℓ instead of V U − UV . In particular, 1− aℓV = 1− TℓV suffices.

We assume the Heegner hypothesis [BCD+14, p. 8], Assumption 3.2: for every ℓ|N , the
ideal (ℓ) splits in OF as l · l.

Proposition 4.3. The Euler factor at ℓ of S♭ℓχ for some ℓ|N is 1− χ−1(l).

Proof. Following [BDP+13, p. 1135], we set

S♭ℓχ =
∑

[a]

χ−1
j (a) · θjf ♭ℓ(a ∗ (A0, t0, ω0)).

Let aℓ = ±1. Then

θjf ♭ℓ(a ∗ (A0, t0, ω0)) = {θjf |(1∓ TℓV )}(a ∗ (A0, t0, ω0)),

= θjf(a ∗ (A0, t0, ω0))∓ ℓjaℓθjf(l
−1
a ∗ (A0, t0, ω0)),

so

S♭ℓχ = (1∓ aℓχ−1(l))Sχ = (1− χ−1(l))Sχ.

�
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Corollary 4.3.1. Assuming the Heegner hypothesis, the Euler factor at ℓ 6= p does not vanish
modulo p when ℓ 6= 1 (mod p).

Proof. Since χ(l) = ℓ, it suffices to have 1− ℓ−1 6≡ 0 (mod p) ⇐⇒ ℓ 6≡ 1 (mod p). �

If f1(q) and f2(q) agree on all coefficients [qn]fi(q) whenever pi ∤ n for all pi ∈ X where X is a
finite set of primes, then we may take the pi-depletions to force them to be equal. In particular,

f ♭X1 (q) = f ♭X2 (q),

where f ♭Xi (q) indicates the modular form fi(q) after pj depletions for each pj .

5. Congruence of modular forms

5.1. Varying K. We follow the discussion from section 3. For the remainder of this section, we
set p = 3. Suppose we have an L-series attached to an elliptic curve E whose Fourier expansion
is f(q) whose Galois representation ρE modulo 3 is residually reducible. Then proposition 15
implies that ρE ∼= ρEχM,χM

2
(mod 3), the Galois representation modulo 3 of the Eisenstein series

EχM ,χM
2 . Now consider the quadratic twist by D′, so that f (D′)(q) =

∑

χD′(n)anq
n, where χD′ is

the Kronecker character. It follows that ρE(D′)
∼= ρEχD,χD

2
(mod 3) where χD = χD′χM is some

quadratic character. Now denote ED := E(D′), and fD(q) := f (D′)(q), so that we parametrize the
twists by the corresponding Eisenstein series. In particular, [qℓ]f(q) ≡ [qℓ]EχD,χD

2 (q) (mod 3)
for all ℓ ∤ cond(ED) = ND2, where N = cond(E). We thus have that fD(q) and EχD ,χD

2 (q) are
congruent modulo 3 everywhere except possibly at indices divisible by some bad prime ℓ.

Let N = cond(E). Assume p ∤ ND. If gcd(N,D) = 1, then cond(ED) = level(fD) = ND2.
On the other hand, D = cond(χD), so level(EχD,χD

2 ) = D2. We need only stabilize (ℓ-deplete)
at primes ℓ such that vℓ(ND

2) = 1. Due to Corollary 4.3.1, we will require all such ℓ to satisfy
ℓ 6≡ 1 (mod 3) for the rest of the paper. This is noted in the section on assumptions. For each
of these ℓ, we have ℓ ∤ D, so ℓ is a good prime for EχD ,χD

2 . On the other hand, for ℓ|D2, it
immediately follows that ℓ2|D2 so [qℓ]EχD ,χD

2 = 0, and since ℓ2|ND2, then [qℓ]fD = 0. Hence
there is no need to ℓ-deplete EχD,χD

k (q) at such primes (it is already zero), and we only need to
consider the primes ℓ for which vℓ(N) = 1.

Denote this set by X. Then X is a set of bad primes for fD(q), but good primes for EχD,χD
2 (q).

Take Z to be the product of ℓ ∈ X.
Note that S♭ℓχ (f) ≡ Sχ(f

[ℓ]) (mod p) and fD(q) ≡ EχD ,χD
2 (q) (mod p), so by the q-expansion

principle, we have

Proposition 5.1. For infinity types χ of type (k + j,−j) with j ≥ 0, we have S♭χ(f
[pZ]
D ) ≡

S♭χ(E
χD ,χD[pZ]
2 ) (mod p).

Setting k = 2 and taking the limit of jm = pm − 1 as m→∞ gives, by continuity,

Proposition 5.2. For NK the norm character of type (1, 1), we have

S♭NKχD
(f

[pZ]
D ) ≡ S♭NKχD

(E
χD ,χD[pZ]
2 ) (mod p).

In fact, more generally:

Proposition 5.3. Suppose we have two modular forms f and g with Galois representations ρf
and ρg such that ρf ≡ ρg (mod p). Then S♭χ(f

[N ]) ≡ S♭χ(g
[N ]) (mod p), where N is such that

[qℓ]f ≡ [qℓ]g (mod p) whenever ℓ ∤ N , and χ is type (k + j,−j) for j ≥ 0. Furthermore, this is
true for χ = NK, the norm character of infinity type (1, 1).

Proof. The stabilization at ℓ yields [qℓ]f [ℓ] = 0, and thus after stabilizing at all ℓ|N , it follows
that

ℓ|N =⇒ [qℓ]f [N ] ≡ [qℓ]g[N ] ≡ 0 (mod p)
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and by hypothesis, they are already congruent modulo p when ℓ ∤ N . The q-expansion principle
then implies that

S♭χ(f
[N ]) ≡ S♭χ(g

[N ]) (mod p).

To see that this holds for χ = NK , take χ of type (2 + pm − 1, 1 − pm) as m → ∞. Since
S♭χ is continuous in χ, it follows that the limit is (2− 1, 1) = (1, 1) and the congruence for NK

holds. �

Define Lp,α(w, χ) = S♭χ(w) as in [Kri21, Definition 8.8]; we’ll write Lp(w, χ) as shorthand.

Proposition 5.4. If S♭χ(E
χD,χD[pZ]
2 ) 6≡ 0 (mod p), then ED/K has rank 1.

Proof. We have S♭NKχD
(E

χD,χD[pZ]
2 ) = Lp(E

χD,χD[pZ]
2 ,NKχD) and S♭NKχD

(f
[pZ]
D ) = Lp(f

[pZ]
D ,NKχD).

From Proposition 5.2, Lp(E
χD,χD[pZ]
2 ,NKχD) ≡ Lp(f

[pZ]
D ,NKχD) (mod p). By [Kri21, Theo-

rem 9.10], Lp(fD,NKχD) = Ω(A, t)Ξp(fD,NKχD) logED
(PK), where PK is a Heegner point.

Now suppose S♭χ(E
χD ,χD[pZ]
2 ) 6≡ 0 (mod p). By Corollary 4.3.1, due to the Heegner hypothesis,

none of the Euler factors vanish, and thus Lp(w,NKχD) 6≡ 0 (mod p) =⇒ Lp(w,NKχD) 6= 0.
It follows that logED

(PK) 6= 0, and hence PK is not a torsion point, and it follows that ED/K
has positive rank. A theorem due to Kolyvagin [Kol89] (for example, see [Dar06, Theorem 2.9])
implies that in fact ED/K has rank exactly 1. �

Adopting the notation from [Kri21, Theorem 9.11], for D > 0 we have that

SNχD
(EχD,χD

2 ) = Lp,α(0, (χD)K),

= Ω(A, t)
Ξp(0, (χD)K)

g(χD)

∑

a∈Cℓ(OK)

(χ−1NK)(a)

N−1
∑

a=1

χ−1
D (a) logp ga(a ⋆ (A, t)).

By Theorem 2.13, this sum is equal to Lp(0, χDχKω)Lp(1, χD), where Lp is the Katz p-adic
L-function. By [Was97, Theorem 5.11], we have that

Lp(0, χDχKω)Lp(1, χD) = −B1,χDχK
Lp(1, χD) ≡ B1,χDχK

B1,χDω−1 (mod p),

so we conclude that
SNχD

(EχD ,χD
2 ) ≡ B1,χDχK

B1,χDω−1 (mod p).

If D < 0 then χD is odd, so

Ω(A, t)
Ξp(0, (χD)K)

g(χD)

∑

a∈Cℓ(OK)

(χ−1NK)(a)
N−1
∑

a=1

χ−1
D (a) logp ga(a ⋆ (A, t)) = Lp(0, χDω)Lp(1, χDχK)

instead. By [Was97, Theorem 5.11] we have that

Lp(0, χDω)Lp(1, χDχK) = −B1,χD
Lp(1, χDχK) ≡ B1,χD

B1,χDχKω−1 (mod p).

This implies that for D < 0, we have

SNχD
(EχD ,χD

2 ) ≡ B1,χD
B1,χDχKω−1 (mod p).

Hence

SNχD
(EχD,χD

2 ) ≡
{

B1,χDω−1B1,χDχK
(mod p) D > 0,

B1,χDχKω−1B1,χD
(mod p) D < 0.

For D > 0, this turns out to be hQ(
√
−3D)hQ(

√
D∆K). For D < 0, this turns out to be

hQ(
√
−3DDK)hQ(

√
D).

Proposition 5.5.

SNχD
(EχD ,χD

2 ) ≡
{

hQ(
√
−3D)hQ(

√
D∆K) (mod p) D > 0,

hQ(
√
−3D∆K)hQ(

√
D) (mod p) D < 0.
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We now turn to calculating the proportion of ∆K such that p = 3 ∤ hQ(
√
−3D)hQ(

√
D∆K); we

will address the other case shortly after.
We assume the Heegner hypothesis. This requires that ∆K is a quadratic residue modulo all

primes dividing cond(ED), except for 3. Letting N = cond(E) and gcd(N,D) = 1 such that
2 ∤ ND, then cond(ED) = ND2. Furthermore, v3(N) 6= 1 (due to the conditions provided by
Nakagawa-Horie in [NH88, p. 21] or [Bye04, Lemma 2.2]). Recall that Assumption 3.3 denotes
the follow conditions on (N,D):

• For all primes ℓ > 3, if vℓ(N) = 1, then ℓ ≡ 2 (mod 3),
• gcd(N,D) = 1,
• 2 ∤ ND,
• v3(N) 6= 1.

Theorem 5.6. For fixed N,D with D > 0 satisfying Assumption 3.3 and 3 ∤ hQ(
√
−3D), the

proportion of ∆K such that 3 ∤ hQ(
√
D∆K) is at least 2−1−ω(ND/3v3(ND)).

Proof. For each 3 6= ℓ|ND, the proportion of ∆K which are quadratic residues mod ℓ is ℓ+1
2ℓ

> 1
2
.

The number of such primes is ω(ND/3v3(ND)), so the proportion of such ∆K is greater than
1

2ω(ND/3v3(ND))
. Of this set X, [Bye04, Lemma 2.2] implies that

|{∆K ∈ X and 3 ∤ hQ(
√
D∆K)}|

|X| ≥ 1

2
.

Hence for a fixed D, the proportion of ∆K which are quadratic residues modulo all ℓ|D and

3 ∤ hQ(
√
D∆K) is at least 2−1−ω(ND/3v3(ND)). �

We have the immediate

Corollary 5.6.1. For fixed N = cond(E) and D > 0 satisfying Assumption 3.3 and 3 ∤
hQ(

√
−3D), the proportion of imaginary quadratic fields K which admit a quadratic twist of E by

the fixed D is positive.

We also immediately obtain information about the rank of ED over K.

Corollary 5.6.2. For fixed N,D with D > 0 satisfying Assumption 3.3 and 3 ∤ hQ(
√
−3D), the

proportion of imaginary quadratic fieldsK such that ED/K has rank 1 is at least 2−1−ω(ND/3v3(ND)).

Proof. Theorem 5.6 implies that the proportion of K with 3 ∤ hQ(
√
−3D)hQ(

√
D∆K) is at least

2−1−ω(ND/3v3(ND)). Combining with the fact that

SNχD
(EχD,χD

2 ) ≡ hQ(
√
−3D)hQ(

√
D∆K) (mod 3),

we have that 3 ∤ SNχD
(EχD,χD

2 ). Now applying Proposition 5.4, we find that every such K also
satisfies that ED/K has rank 1. �

We also address the D < 0 case. Once again, let N = cond(E) and gcd(N,D) = 1 with
2 ∤ ND, and v3(N) 6= 1.

Theorem 5.7. For fixed N,D with D < 0 satisfying Assumption 3.3 and 3 ∤ hQ(
√
D), the

proportion of ∆K such that 3 ∤ hQ(
√
−3D∆K) is at least 2−1−ω(ND/3v3(ND)).

Proof. For each 3 6= ℓ|ND, the proportion of DK which are quadratic residues mod ℓ is ℓ+1
2ℓ

> 1
2
.

The number of such primes is ω(ND/3v3(ND)), so the proportion of such ∆K is greater than

2−ω(ND/3
v3(ND)). This set X is given by a system of congruence conditions, modulo all 3 6= ℓ|ND.

Of this set X, [Bye04, Lemma 2.2] implies that
∣

∣∆K ∈ X and 3 ∤ hQ(
√
−3D∆K)

∣

∣

|X| ≥ 1

2
.
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Hence for fixedD, the proportion of ∆K which satisfy the Heegner hypothesis and e ∤ hQ(
√
−3D∆K)

is at least 2−1−ω(ND/3v3(ND)). �

Once again, we find two corollaries.

Corollary 5.7.1. For fixed N = cond(E) and D < 0 satisfying Assumption 3.3 and 3 ∤ hQ(
√
D),

the proportion of imaginary quadratic fields K which admit a quadratic twist of E by the fixed
D is positive.

Corollary 5.7.2. For fixed N,D with D < 0 satisfying Assumption 3.3 and 3 ∤ hQ(
√
D), the pro-

portion of imaginary quadratic fields K such that ED/K has rank 1 is at least 2−1−ω(ND/3v3(ND)).

Proof. Theorem 5.7 implies that the proportion of K with 3 ∤ hQ(
√
D)hQ(

√
−3D∆K) is at least

2−1−ω(ND/3v3(ND)). Combining with the fact that

SNχD
(EχD,χD

2 ) ≡ hQ(
√
D)hQ(

√
−3D∆K) (mod 3),

we have that 3 ∤ SNχD
(EχD,χD

2 ). Now applying Proposition 5.4, we find that every such K also
satisfies that ED/K has rank 1. �

5.2. Varying D. In this paper we will usually fix D and vary K. Let us now fix N and K and
vary D. The first result we have is considering the proportion of D which satisfy the Heegner
hypothesis.

Theorem 5.8. For fixed N,K, the number of 0 < D < X satisfying the Heegner hypothesis is
asymptotic to X/(logX)1/2.

Proof. For each 3 6= ℓ|ND, we need ∆K to be a quadratic residue mod ℓ. Let ∆K = −2e
∏M

i=1 pi
where the pi are distinct odd primes and e ∈ {0, 2}. We need

(−1
ℓ

)

∏

i

(pi
ℓ

)

= 1,

since the factor of 2 is always a square. Quadratic reciprocity implies that
(

pi
ℓ

)

= (−1) pi−1

2
· ℓ−1

2

(

ℓ
pi

)

for each pi. In particular, when ℓ is fixed, the sign depends only on pi, and is also fixed. Then
(

∆K

ℓ

)

= 1 is equivalent to the condition that an even number of the (−1) pi−1

2
· ℓ−1

2

(

ℓ
pi

)

are −1,
and thus in the product

(

∆K

ℓ

)

=
∏

i

(−1)
pi−1

2
· ℓ−1

2

(

ℓ

pi

)

,

it suffices to allow anything in the first M −1 indices, and the last index is determined in order
to yield a product of 1. Note that if ℓ = pi for any i, then it is always a quadratic residue. Thus
at most pi−1

2pi
of ℓ have ∆K not a quadratic residue (mod ℓ), and it follows that the proportion

of ℓ with ∆K a quadratic residue (mod ℓ) is at least 1
2
. Even stronger, ∆K is a quadratic

residue (mod ℓ) whenever ℓ̄ ∈ S ⊂ Z/∆′
KZ where ∆′

K = ∆K or 4∆K , and |S| > |∆′
K |/2. It

follows that D can only be constructed from such primes.
From the Wiener-Ikehara Tauberian theorem [Ser74, Theorem 2.4], we find that the propor-

tion of D < X such that D is constructed from this set of primes is asymptotic to X/(logX)1/2.
�

Suppose we let D vary and count the proportion of pairs (D,K) (equivalently pairs (D,∆K))
such that ED/K has rank 1. Corollary 5.6.1 and Corollary 5.6.2 imply that the proportion of
∆K for fixed D depends only on D, and in particular, on the number of prime factors of D.
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Thus it suffices to consider only positive D, as the sign does not matter. Consider the interval
0 < D < X. Then we seek to measure

F (X) =
1

X

X
∑

D=1

2−ω(D).

By summing over values of ω(n) instead, we have

F (X) =
1

X

logX
∑

n=0

2−n ·#{D ≤ X|ω(D) = n}.

The final proportion will be at least 1
2
F (X). We will now find asymptotic bounds for F (X).

By Erdös-Kac [EK40], for 1 ≤ n ≤ X, ω(n) follows a Gaussian distribution with σ =√
log logX and µ = log logX. Therefore we may assume that for sufficiently large X, ω may

be approximated by a continuous distribution; we will assume that this continuous distribution
is sufficiently accurate and measure

F (X) ∼ T (X) =

∫ X·(Y−log logX)/
√
log logX

0

2−x · 1

σ
√
2π
e−

1
2(

x−µ
σ )

2

dx,

where Y = max{ω(D)|D ≤ X}. Since for large X, it’s clear that the upper bound exceeds 2X,
we may take

S(X) =

∫ 2X

0

2−x · 1

σ
√
2π
e−

1
2(

x−µ
σ )

2

dx < T (X).

Substituting y = 2−x, we transform the following integral, which is S(X) but extended from
−∞ to ∞:

∫ ∞

−∞
2−x · 1

σ
√
2π
e−

1
2(

x−µ
σ )

2

dx = e−(log 2)µ+
(log 2)2σ2

2 > S(X).

Let κ = − (log 2)2

2
+ log 2 ≈ 0.45. Then substituting µ = σ2 = log logX, we have

S(X) =
1

(logX)κ
− A(X)−B(X),

where

A(X) =

∫ 0

−∞
2−x · 1

σ
√
2π
e−

1
2(

x−µ
σ )

2

dx,

B(X) =

∫ ∞

2X

2−x · 1

σ
√
2π
e−

1
2(

x−µ
σ )

2

dx.

We will now bound A(X) and B(X) (both of which are positive values, since the integrand is
strictly positive).

Lemma 5.9. A(X) < 1
(logX)1/2

√
X

.

Proof. Take

A(X) =

∫ ∞

0

2x · 1

σ
√
2π
e−

1
2(

x+µ
σ )

2

dx.

Let N = µ = σ2 = log logX. Then we can write

A(X) =
1

N
√
2π

∫ ∞

0

exp

(

x log 2− x2 + 2xN +N2

2N

)

dx.
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Now consider that

x log 2− x2 + 2xN +N2

2N
= − x2

2N
− N

2
− x(1− log 2)

N
< − x2

2N
− N

2
.

As a result, we have that A(X) < e−N/2

N
√
2π
I(X), where I(X) =

∫∞
0
e−

x2

2N dx. But I(X) can be

solved using the well-known Poisson trick, which yields that I(X)2 = 2πN =⇒ I(X) =
√
2πN ,

so we have that A(X) < e−N/2/
√
N . �

With B(X), we can calculate it almost exactly.

Lemma 5.10. B(X) < e−2X2/ log logX .

Proof. We have

B(X) =
1

N
√
2π

∫ ∞

2X

e−x log 2−
(x−N)2

2N dx.

The exponent rearranges to

−N
2
(1− (1− log 2)2)− (x−N(1− log 2))2

2N
=⇒ B(X) =

e−
N
2
(1−(1−log 2)2)

N
√
2π

J(X),

where

J(X) =

∫ ∞

2X

e−
(x−(1−log 2)N)2

2N dx =

∫ ∞

2X−(1−log 2)N

e−x
2/2N dx.

Using Poisson’s trick once again, we find

J(X)2 < 2π

∫ ∞

2X−(1−log 2)N

re−r
2/2N dr = 2πNe−

(2X−(1−log 2)N)2

2N .

As a result, we conclude that

logB(X) < −N
2
(1−(1−log 2)2)− (2X − (1− log 2)N)2

2N
= −2X

2

N
+2X(1−log 2)−N

2
< −2X

2

N
.

�

Putting the above two lemmas together, we conclude that

1

(logX)κ
− 1

(logX)1/2
√
X
− 1

e2X2/ log logX
< S(X) <

1

(logX)κ
,

which implies that

Theorem 5.11. Assuming that ω is approximated by a (continuous) Gaussian distribution
sufficiently well, in the set DX = {(D,∆K)| |D| < X,K an imaginary quadratic field}, the
proportion P (X) of DX (for X ≫ 0) which yield a quadratic twist with rank 1 over K satisfies

1

2

(

1

(logX)κ
− 1

(logX)1/2
√
X
− 1

e2X2/ log logX

)

< P (X) <
1

2(logX)κ
,

where κ = log 2− (log 2)2

2
≈ 0.45.
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6. Higher twists

6.1. Cubic twists. Let f be the modular form associated to E, an elliptic curve over L =
Q(
√
−3). We have that f = θψ (of weight 2) for some Hecke character ψ of type (1, 0), where

θψ =
∑

a⊂OL

ψ(a)qN(a) ∈ θψ ∈ Z[[q]].

Let χd : Gal(L( 3
√
d)/L)→ 〈ζ3〉 be the associated cubic twist character, where ζ3 =

−1+
√
−3

2
is a

primitive third root of unity. Let fd be the modular form associated to Ed,3, the cubic twist of
E by d, such that

fd = θψχd
=
∑

a⊂OL

ψχd(a)q
N(a) ∈ Z[[q]].

Proposition 6.1. The modular forms f and fd are equivalent modulo 3 at all coefficients except
those which are not relatively prime to Nd.

Proof. For all n ∈ Z with gcd(n, cond(χd)) = 1, we have χd(n) ≡ 1 (mod ζ3 − 1). As a result,
for all n coprime to cond(χd) · cond(E) = Nd, we have

ψ(n) ≡ ψχd(n) mod (ζ3 − 1)OL[[q]],

and thus we have f ≡ fd mod (ζ3 − 1)OL[[q]] except at the coefficients of qn for gcd(n,Nd) 6= 1.
Since (ζ3−1)OL∩Z = (3)Z and f, fd ∈ Z[[q]], it follows that f−fd ∈ Z[[q]] and f−fd−G(q) ∈
(ζ3−1)OL[[q]] for some G(q) ∈ Z[[q]] with G(q) =

∑

gcd(n,Nd)>1 gnq
n. Therefore f −fd−G(q) ∈

Z[[q]], and hence

f − fd −G(q) ∈ (ζ3 − 1)OL[[q]] ∩ Z[[q]] = (3)Z[[q]].

As a result, f − fd ≡ G(q) (mod 3), and therefore f ≡ fd (mod 3) except at coefficients of qn

for n not relatively prime to Nd. �

Proposition 6.2. The Galois representations of f and fd are isomorphic mod 3.

Proof. Let ρE : Gal(Q̄/Q) → GL(lim←−E[n])
∼=
∏

pGL2(Zp) be the Galois representation of E.
Let ρd be the Galois representation of Ed,3, the cubic twist of E by d. Let N be the conductor
of E, so that Nd is the conductor of Ed,3. Then Neron-Ogg-Shafarevich implies that ρ and ρd
are unramified outside of N and Nd, respectively. As a result, the Galois representations factor
through Gal(Q(N)/Q) and Gal(Q(Nd)/Q, respectively, where Q(n) is the maximal unramified
extension of Q outside of n. Now for all primes ℓ ∤ Nd, the Artin map gives a Frobenius
element Frobℓ such that tr Frobℓ,E = [qℓ]f and tr Frobℓ,Ed,3

[qℓ]fd. The prior discussion shows
that

f ≡ fd (mod 3) =⇒ tr Frobℓ,E ≡ tr Frobℓ,Ed,3
(mod 3).

Furthermore, the Frobenius elements always satisfy detFrobℓ = ℓ. The Brauer-Nesbitt theorem
applied to ρ implies that ρ and ρd are characterized (up to isomorphism) by their characteristic
polynomials, and thus by the trace and determinant functions. We showed that ρ and ρd agree
on the trace and determinant functions modulo 3 for all Frobenius elements Frobℓ with ℓ ∤ Nd.
By the Cebotarev density function, the Frobenius elements have density 1 in the Galois groups,
and therefore all but finitely many of the Frobenius elements are dense in the Galois group.
Since trace and determinant are continuous functions, this implies that ρ and ρd agree modulo 3
on trace and determinant on the entire Galois group, and thus they agree modulo 3 everywhere
(by Brauer-Nesbitt). As a result, we find that ρ ≡ ρd (mod 3). �

Proposition 6.3. If S♭NK
(f [Nd]) 6≡ 0 (mod 3), then Ed,3/K has rank 1.
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Proof. By Proposition 5.2, we have that

S♭NK
(f [Nd]) ≡ S♭NK

(f
[Nd]
d ) (mod 3).

Following [Kri21, Definition 8.8], we have S♭NK
(f [Nd]) = Lp(f

[Nd],NK) and S♭NK
(f

[Nd]
d ) = Lp(f

[Nd]
d ,NK).

From [Kri21, Theorem 9.10], we have

Lp(f
[Nd]
d ,NK) = ω(A, t)Ξp(f

[Nd]
d ,NK) logEd,3

(PK),

where PK is a Heegner point. As a result, if S♭NK
(f [Nd]) 6≡ 0 (mod 3), then this implies that

S♭NK
(f

[Nd]
d ) ≡ S♭NK

(f [Nd]) 6≡ 0 (mod 3) =⇒ S♭NK
(f

[Nd]
d ) 6= 0 =⇒ logEd,3

(PK) 6= 0.

Now applying Proposition 5.4, we find that Ed,3/K has rank exactly 1. �

We assume the Galois representation ρE modulo 3 is reducible. By Proposition 4.2, we have
that ρE ∼= χM ⊕ χMχ up to semisimplification.

6.2. Sextic twists. Consider the family of elliptic curves y2 = x3 + c over Q for c ∈ Q up to
isomorphism; denote this by Cc. This family of elliptic curves has j-invariant j = 0. The sextic

twist by D, g6,D(Cc), is the elliptic curve given by

y2 = x3 + cD ∼=Q (D3y)2 = (D2x)3 + cD7 ∼=Q y
2 = x3 + cD7,

where E1
∼=F E2 denotes that E1 is isomorphic to E2 over F . Thus the sextic twist by D is a

function
g6,D : Cc 7→ CcD7 .

The quadratic twist by D on Cc, denoted by g2,D(Cc), is the curve

Dy2 = x3 + c ∼=Q (D2y)2 = (Dx)3 + cD3 ∼=Q y
2 = x3 + cD3,

so
g2,D(Cc) = CcD3 .

The cubic twist by D on Cc, denoted by g3,D(Cc), is the curve

y2 = Dx3 + c ∼=Q (Dy)2 = (Dx)3 + cD2 ∼=Q y
2 = x3 + cD2,

so
g3,D(Cc) = CcD2 .

We easily check that g6,D(Cc) = CcD7 = g2,D(CcD4) = g2,D(g3,D2(Cc)) = g23,D ◦ g3,D ◦ g3,D(Cc).
As a result, we have that

g6,D = g2,D ◦ g3,D ◦ g3,D = g3,D2 ◦ g2,D,
and it’s clear that these functions commute.

Proposition 6.4. The family of curves Cc are exactly the elliptic curves which admit cubic
twists.

Proof. This family is precisely the family of elliptic curves with Weierstrass form y2 = x3+ax+b
with a = 0; in particular, this is exactly the family of elliptic curves with j-invariant 0, since

j(E) = −1728 (4a)3

∆
, where ∆(E) = −16(4a3 + 27b2) (see [Sil09, p. 45]).

On the other hand, an elliptic curve E admits a cubic twist iff it has CM by Q(
√
−3) = Q(ζ3).

Since the underlying field has characteristic 0, by [Sil09, cor. III.10.2], this is equivalent to
Aut(E) = µ6 = 〈ζ6〉 ⇐⇒ j(E) = 0. �

Due to this, the family Cc are the only elliptic curves which interest us.

Proposition 6.5. The Galois representation of any of the curves Cc is residually reducible
modulo 3.
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Proof. Since this family of curves admits cubic twists, they have CM by L = Q(
√
−3). The

prime (3) is ramified in L/Q, so let (
√
−3) ⊂ OL be the prime lying over (3). Then E[(

√
−3)] :=

{x ∈ E|[a]x = 0∀a ∈ (
√
−3)} = {x ∈ E|[

√
−3]x = 0} is a group of order 3. This group is

defined over the Hilbert class field of L, which is L since the class number of L is 1. Now,
the group Gal(L/Q) is generated by σ, the automorphism given by complex conjugation.
Since σ((

√
−3)) = (

√
−3), it follows that E[(

√
−3)] is defined over L ∩ R = Q. As a result,

E[(
√
−3)] ( E[3] is a subgroup preserved by Gal(Q/Q), and thus ρCc is residually reducible

modulo 3. �

Let N = cond(Cc) and let D be some positive integer satisfying Assumption 3.3.

Theorem 6.6. For a fixed c (and thus N) and D > 0 satisfying Assumption 3.3 and 3 ∤
hQ(

√
−3D), the proportion of imaginary quadratic fields K such that g6,D(Cc)/K has rank 1 is at

least 2−1−ω(ND/3v3(ND)).

Proof. We have cond(g6,D(Cc)) = NDt for some nonnegative integer t. Since cond(g2,D(Cc)) =
ND2, it follows that the set of primes dividing cond(g6,D(Cc)) is a subset of the set of primes
dividing cond(g2,D(Cc)). As a result, the subsequent cubic twist by D2 yields an elliptic curve
whose conductor does not have any new primes dividing it (compared to ND2), and therefore
does not require any more ℓ-depletions.

As a result, any K which admits a quadratic twist of Cc by D will also admit a cubic twist by
D2. This occurs when ∆K is a quadratic residue modulo all primes ℓ|ND, and by Theorem 5.6,

occurs for at least (1/2)1+ω(ND/3
v3(ND)) of the ∆K . Now applying Proposition 5.4, we conclude

that every such K also satisfies the property that g6,D(Cc)/K has rank 1. �

In particular, since every Cc is isomorphic to the sextic twist of C1 by c (over a sufficient K),
it is of particular interest to study C1 := y2 = x3 + 1. Thus specializing Theorem 6.6, we have

Corollary 6.6.1. For fixed D > 0 with 3 ∤ D and 3 ∤ hQ(
√
−3D), the proportion of imaginary

quadratic fields K such that g6,D(C1)/K has rank 1 is at least 2−1−ω(D).

Proof. By applying Theorem 6.6 with N = cond(C1) = 27, the result follows. �

Addressing the D < 0 case, we have the analogous results.

Theorem 6.7. For a fixed c (and thus N) and D < 0 satisfying Assumption 3.3 and 3 ∤ hQ(
√
D),

the proportion of imaginary quadratic fields K such that g6,D(Cc)/K has rank 1 is at least

2−1−ω(ND/3v3(ND)).

Proof. We have cond(g6,D(Cc)) = ±NDt for some nonnegative integer t. Since cond(g2,D(Cc)) =
ND2, it follows that the set of primes dividing cond(g6,D(Cc)) is a subset of the set of primes
dividing cond(g2,D(Cc)). As a result, the subsequent cubic twist by D2 yields an elliptic curve
whose conductor does not have any new primes dividing it (compared to ND2), and therefore
does not require any more ℓ-depletions.

As a result, any K which admits a quadratic twist of Cc by D will also admit a cubic twist by
D2. This occurs when ∆K is a quadratic residue modulo all primes ℓ|ND, and by Theorem 5.7,

occurs for at least 2−1−ω(ND/3v3(ND)) of the ∆K . Now applying Proposition 5.4, we conclude
that every such K also satisfies the property that g6,D(Cc)/K has rank 1. �

Once again specializing to C1, we have:

Corollary 6.7.1. For fixed D < 0 with 3 ∤ D and 3 ∤ hQ(
√
D), the proportion of imaginary

quadratic fields K such that g6,D(C1)/K has rank 1 is at least 2−1−ω(D).

Proof. By applying Theorem 6.7 with N = cond(C1) = 27, the result follows. �
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7. Ranks of twists over Q

For some suitable elliptic curve E/Q, we have discussed the proportion of imaginary quadratic
fields K with ED/K yielding elliptic curves of either rank 1 or rank 0. We will now consider
the ranks over Q instead.

We will need the concept of a root number. The root number wE/K of an elliptic curve
E/K is the value wE/K ∈ {−1, 1} such that LE/K(s) = wE/KLE/K(2− s).

Theorem 7.1. Fix E with N = cond(E) and D satisfying gcd(N,D) = gcd(N, 6) = 1. Then

ED/Q has rank 1 for at least φ(N)
4N

of all such D, and rank 0 for at least φ(N)
4N

of all such D.

Proof. By [Kol89], Heegner points in E/K exist iff wE/K = −1. Furthermore, if E/K has rank

1, then E/Q has rank
1−wE/Q

2
, and wED/Q =

(

D
−N
)

wE/Q. It follows that if ED/K has rank 1,

then ED/Q has rank 1 if wE/Q = −1.
For D > 0, Corollary 5.6.1 shows that when 3 ∤ hQ(

√
−3D), there exists some imaginary

quadratic field K (in fact, a positive density) such that ED/K has rank 1, and thus it suffices
to check when wE/Q = −1. Since wE/Q is fixed, we check the proportion of D > 0 such that
(

D
−N
)

= ±1 in each case. We have
(

D
−N
)

=
(

D
N

)

which depends only on the residue of D

modulo N . There are exactly φ(N)/2 quadratic residues and quadratic nonresidues, and thus

the proportion of D (assuming 3 ∤ hQ(
√
−3D)) is exactly φ(N)

2N
. Now [Bye04, Lemma 2.2] implies

that for every m such that D ≡ m (mod N) =⇒
(

D
−N
)

= −wE/Q, then the proportion

S−(X,−3m,N) :=

∣

∣D > 0 | − 3D ≡ −3m (mod N), hQ(
√
−3D) 6≡ 0 (mod 3)

∣

∣

|D > 0 | − 3D ≡ −3m (mod N)| ≥ 1

2
.

Since this holds for every such m, it follows that the proportion of such D satisfying
(

D
−N
)

=

−wE/Q is at least 1
2
.

For D < 0, Corollary 5.6.2 shows that when 3 ∤ hQ(
√
D), there exists some imaginary quadratic

field K (in fact, a positive density) such that ED/K has rank 1, and thus it suffices to check
when wE/Q = −1. Since wE/Q is fixed, we check the proportion of D < 0 such that

(

D
−N
)

= ±1
in each case. We have

(

D
−N
)

=
(

D
N

) (

D
−1

)

= −
(

D
N

)

which depends only on the residue of D
modulo N . There are exactly φ(N)/2 quadratic residues and quadratic nonresidues, and thus

the proportion of D (assuming 3 ∤ hQ(
√
D)) is exactly φ(N)

2N
. Now [Bye04, Lemma 2.2] implies

that for every m such that D ≡ m (mod N) =⇒
(

D
−N
)

= −wE/Q, then the proportion

S−(X,m,N) :=

∣

∣

∣
D < 0 |D ≡ m (mod N), hQ(

√
D) 6≡ 0 (mod 3)

∣

∣

∣

|D < 0 |D ≡ m (mod N)| ≥ 1

2
.

Since this holds for every such m, it follows that the proportion of such D satisfying
(

D
−N
)

=

−wE/Q is at least 1
2
.

We conclude that in either case, the proportion of D with ED/Q having rank 1 is at least
φ(N)
2N
· 1
2
= φ(N)

4N
. Analogously, when

(

D
−N
)

= wE/Q, we find that ED/Q has rank 0, and the same
result holds. �

Noting that the assumptions hold for a fixed (positive) proportion of D, we conclude that
for elliptic curves satisfying the above assumptions, Conjecture 1.4 holds.

Corollary 7.1.1. For such E satisfying the assumptions of Theorem 7.1, the weak Goldfeld
conjecture holds.



FACTORIZATION OF MEASURES AND APPLICATIONS TO THE WEAK GOLDFELD CONJECTURE 23

References

[BCD+14] Massimo Bertolini, Francesc Castella, Henri Darmon, Samit Dasgupta, Kartik
Prasanna, and Victor Rotger. p-adic L-functions and euler systems: a tale in two
trilogies. Automorphic forms and Galois representations, 1:52–102, 2014.

[BCDT01] Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor. On the
modularity of elliptic curves over Q: wild 3-adic exercises. Journal of the American
Mathematical Society, pages 843–939, 2001.

[BDP+13] Massimo Bertolini, Henri Darmon, Kartik Prasanna, et al. Generalized heegner
cycles and p-adic rankin L-series. Duke Mathematical Journal, 162(6):1033–1148,
2013.

[BS13] Manjul Bhargava and Arul Shankar. The average size of the 5-selmer group of elliptic
curves is 6, and the average rank is less than 1. arXiv preprint arXiv:1312.7859,
2013.

[BS15] Manjul Bhargava and Arul Shankar. Ternary cubic forms having bounded invariants,
and the existence of a positive proportion of elliptic curves having rank 0. Annals
of Mathematics, pages 587–621, 2015.

[BSD65] Bryan John Birch and Henry Peter Francis Swinnerton-Dyer. Notes on elliptic
curves. ii. Journal für die reine und angewandte Mathematik, 1965.

[BSZ14] Manjul Bhargava, Christopher Skinner, and Wei Zhang. A majority of elliptic
curves over Q satisfy the birch and swinnerton-dyer conjecture. arXiv preprint
arXiv:1407.1826, 2014.

[Bye04] Dongho Byeon. Class numbers of quadratic fields Q(
√
D) and Q(

√
tD). Proceedings

of the American Mathematical Society, 132(11):3137–3140, 2004.
[Dar06] Henri Darmon. Heegner points, stark-heegner points, and values of L-series. In

International congress of mathematicians, volume 2, pages 313–345, 2006.
[EK40] Paul Erdös and Mark Kac. The gaussian law of errors in the theory of additive

number theoretic functions. American Journal of Mathematics, 62(1):738–742, 1940.
[Gol79] Dorian Goldfeld. Conjectures on elliptic curves over quadratic fields. In Number

Theory Carbondale 1979, pages 108–118. Springer, 1979.
[Gro80] Benedict H Gross. On the factorization of p-adic L-series. Inventiones mathematicae,

57(1):83–95, 1980.
[GZ86] Benedict H Gross and Don B Zagier. Heegner points and derivatives of L-series.

Inventiones mathematicae, 84(2):225–320, 1986.
[KL19] Daniel Kriz and Chao Li. Goldfeld’s conjecture and congruences between heegner

points. In Forum of Mathematics, Sigma, volume 7. Cambridge University Press,
2019.

[Kol89] Viktor Alexandrovich Kolyvagin. Finiteness of E(Q) and X(E,Q) for a subclass of
weil curves. Mathematics of the USSR-Izvestiya, 32(3):523, 1989.

[Kol07] VA Kolyvagin. Euler systems. In The Grothendieck Festschrift, pages 435–483.
Springer, 2007.

[Kri21] Daniel Kriz. Supersingular p-adic L-functions, maass-shimura operators and wald-
spurger formulas. In Supersingular p-adic L-functions, Maass-Shimura Operators
and Waldspurger Formulas. Princeton University Press, 2021.

[KS99] Nicholas M Katz and Peter Sarnak. Random matrices, Frobenius eigenvalues, and
monodromy, volume 45. American Mathematical Soc., 1999.

[NH88] Jin Nakagawa and Kuniaki Horie. Elliptic curves with no rational points. Proceedings
of the American Mathematical Society, 104(1):20–24, 1988.

[Ser73] Jean-Pierre Serre. Formes modulaires et fonctions zêta p-adiques. In Modular func-
tions of one variable III, pages 191–268. Springer, 1973.



24 MERRICK CAI

[Ser74] Jean-Pierre Serre. Divisibilité de certaines fonctions arithmétiques. Séminaire
Delange-Pisot-Poitou. Théorie des nombres, 16(1):1–28, 1974.

[Ser78] Jean-Pierre Serre. Sur le résidu de la fonction zêta p-adique d’un corps de nombres.
CR Acad. Sci. Paris, 278:183–188, 1978.

[Sil09] Joseph H Silverman. The arithmetic of elliptic curves, volume 106. Springer Science
& Business Media, 2009.

[Sta77] Harold M Stark. Class fields and modular forms of weight one. In Modular Functions
of one Variable V, pages 277–287. Springer, 1977.

[TW95] Richard Taylor and Andrew Wiles. Ring-theoretic properties of certain hecke alge-
bras. Annals of Mathematics, 141(3):553–572, 1995.

[Was97] Lawrence C Washington. Introduction to cyclotomic fields, volume 83. Springer
Science & Business Media, 1997.

[Wil95] Andrew Wiles. Modular elliptic curves and fermat’s last theorem. Annals of math-
ematics, pages 443–551, 1995.


	1. Introduction
	1.1. Algebraic and analytic rank
	1.2. Goldfeld's conjecture
	1.3. Measures on profinite groups
	1.4. Structure of the paper and main results
	Acknowledgements

	2. Factorization of measures
	2.1. Dirichlet characters with conductors a prime power
	2.2. Generalization to conductor not a prime power

	3. Assumptions and conventions
	4. Congruences modulo p
	4.1. Congruences of L-series and Eisenstein series
	4.2. Congruences of quadratic twists
	4.3. Stabilizations

	5. Congruence of modular forms
	5.1. Varying K
	5.2. Varying D

	6. Higher twists
	6.1. Cubic twists
	6.2. Sextic twists

	7. Ranks of twists over Q
	References

