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FACTORIZATION OF MEASURES AND APPLICATIONS TO THE WEAK

GOLDFELD CONJECTURE

MERRICK CAI

ABSTRACT. Extending Gross’s result, we prove that a certain factorizaton of measures holds
for all p and any finite even Dirichlet character x of any conductor, rather than only for split
p and x with conductor a power of p. Using this generalization, we find lower bounds on the
proportion of imaginary quadratic fields K for which (under certain assumptions on the elliptic
curve) a chosen quadratic twist of an elliptic curve FE over K has rank 1. We also find lower and
upper bounds for the proportion of quadratic twists with rank 1 when we vary D, the factor
we twist by, under the assumption that w (the prime factor counting function) is sufficiently
close to a Gaussian distribution, as described by Erdés-Kac. We apply similar methods to
cubic twists, and then derive analogous lower bounds for the proportion of imaginary quadratic
fields for which a sextic twist has rank 1. Lastly, for elliptic curves over QQ satisfying certain
assumptions, we find positive lower bounds on the proportion of quadratic twists (over Q) which
have rank 0 and rank 1, which yields examples of elliptic curves satisfying the weak Goldfeld
conjecture.
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1. INTRODUCTION

1.1. Algebraic and analytic rank. Let F be an elliptic curve over Q. The Q-points of F
form an abelian group E(Q) called the Mordell-Weil group. Mordell’s theorem states that F(Q)
is finitely generated, and thus the rank of E(Q) is a well-defined, nonnegative integer. We call
the rank of £(Q) the algebraic rank of £, and denote it as rq,(E).

However, the algebraic rank is rather difficult to handle. Instead, we may attach the following
L-function to the elliptic curve E/Q:

L(E/Q.s) = [[ L(E/Q.5).

where
(1—a, p~*+p"2)"" phas good reduction,
L,(F/Q,s) =4 (1+a, -p*)" p has multiplicative reduction,
1 p has additive reduction,

and a, = p + 1 — |E(F,)| is the trace of the Frobenius element associated to p. (In the
multiplicative reduction case, the type of reduction determines the sign of the plus/minus.)
This L-function satisfies a functional equation relating its values at s and 2 — s, and thus its
order of vanishing at s = 1 is of interest. We call the order of vanishing of L(E/Q, s) at s =1
the analytic rank of E, and denote it as r,,(E).

Although the notions of analytic and algebraic rank may seem unrelated, they are not. The
famous Birch and Swinnerton-Dyer conjecture [BSD65]| posits that they are in fact equal.

Conjecture 1.1 (Birch and Swinnerton-Dyer). The algebraic rank is the same as the analytic
rank: 74,(E) = ren(E).

The BSD conjecture is still wide open, although significant advances have been made. Some
of the strongest known results are due to [TW95|, [Wil95|, [BCDTO01|, [GZ86], [Kol89], and
[Kol07], and they relate the algebraic and analytic ranks in low rank cases.

Theorem 1.2. Ifr,,(E) € {0,1}, then 14, (E) = rqqe(E).
However, it’s still unproven as to whether 74,(E) € {0, 1} implies that ry,(E) = ren(E).

1.2. Goldfeld’s conjecture. Elliptic curves can be ordered by a property called height. This
property is useful when studying statistics of elliptic curves, since it allows us to formalize
the notion of an average: to measure the average of a quantity over all elliptic curves, we can
calculate the average over the finitely many elliptic curves with height at most X, and then take
a limit as X — oo. The analytic rank of an elliptic curve is one particularly important property
that can be studied in this way. Originating from [Gol79] and [KS99], it is widely believed that
among all elliptic curves over QQ, the elliptic curves with analytic rank 0 or 1 should each have
density 50%, while elliptic curves with analytic rank greater than 1 should have density 0.
Recent developments by [BS15|, [BSZ14], [BS13], and others have placed increasingly tighter
bounds on the average, putting it closer and closer to the conjectured value of 0.5; for example,
the average rank is bounded below by 0.2068 and bounded above by 0.885.

Understanding the average rank over all elliptic curves is rather difficult. We can instead
look at one particular family of elliptic curves: the quadratic twists Ep of a fixed elliptic curve
E. In [Gol79], Goldfeld postulated that the average rank of a family of quadratic twists should
behave in the same way as the set of elliptic curves over Q.

Conjecture 1.3 (Goldfeld). Let E be an elliptic curve and let {Ep} be the family of quadratic
twists of E as D varies over the set of fundamental domains. Then 50% of the Ep have analytic
rank 0, 50% have analytic rank 1, and 0% have analytic rank greater than 1.
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However, Goldfeld’s conjecture is still very open. There is no elliptic curve which has been
shown to satisfy Goldfeld’s conjecture. We will instead study the following weaker version of
Goldfeld’s conjecture (see, for example, [KL19, Conjecture 1.2]).

Conjecture 1.4 (Weak Goldfeld). As in Conjecture 1.3, fix £ and let {Ep} be the family of
quadratic twists of E. A positive proportion of the Fp have rank 0 and a positive proportion
of the Ep have rank 1.

In the last section of this paper, we will prove a result which, given certain conditions on the
elliptic curve, guarantee that a positive proportion of its quadratic twists will have rank 0 and
1; in addition, we give lower bounds for these proportions.

1.3. Measures on profinite groups. We follow the exposition in [Gro80, §1|. Let p € Z be a
prime, Z, the ring of p-adic integers, Q, the field of p-adic numbers, and C, the algebraic closure
of Q,. Now let D, be the ring of integral elements in C,. For a commutative profinite group G,

we consider its completed group algebra over D, Ag = D,[[G]] = Hm, open D,[G/H]. The

elements of Ag are called measures on GG. We also define Ay, the total ring of fractions of Ag,
as the ring whose elements are o/ for o, f € Ag and f3 is not a zero-divisor.

We define a bilinear pairing between continuous functions G — C,, and measures in Ag by
approximating f by locally constant functions and taking a limit, as in [Ser78|:

(f,\) = /fd)\

For A = a/f € A}, we extend this pairing by (f,\) = (f,«)/(f,5). This construction is
well-defined since it does not depend on the representation of A\, and agrees with our previous
definition for A € Ag.

Let K be an imaginary quadratic field. We will primarily consider the case where G =
Gal(K (pp=)/Q) or G = Gal(K (pp~)/Q)/o where o is complex conjugation, and f = x is a

(continuous) character from G to D).

1.4. Structure of the paper and main results. Let p be a prime, K = Q(v/—C) an
imaginary quadratic field where p splits, and x a continuous p-adic character of Gal(K (ji,=)/Q)
which is trivial on complex conjugation. Let yx be the restriction of x to Gal(K (uy~)/K),
¢ the quadratic character modulo C, and w the Teichmiiller character. As in [Gro80|, define
the measures Aj, A2, A3 by (x, A1) = L, (0, xx), (X, 2) = L,(0, xew), and (x, A3) = L,(1,x").
Motivated by the classical factorization of L-series L(s, (Xk)oo) = L(S, Xoo€)L(S, Xco), Gross
[Gro80, Theorem 3.1] derives the factorization of measures

A=Az Ag,

when p is split in K and y is a finite even Dirichlet character whose conductor is a power of
p. In §2, we extend this result in Theorem 2.13 to all p (not just split p) and any finite even
Dirichlet character x (with any conductor).

We then turn our attention to elliptic curves. In §3, we introduce assumptions on the elliptic
curve which will hold for the remainder of the paper. We will assume that E is residually
reducible modulo 3 (Assumption 3.1), and we will work with integers D and imaginary quadratic
fields K satisfying various divisibility and congruence conditions relating D, the conductor of
E, and the discriminant of K (Assumptions 3.2 and 3.3).

In §4, we discuss general congruences of L-series and Eisenstein series, especially those asso-
ciated with quadratic characters. We obtain some auxiliary results concerning the congruence
of certain modular forms with Eisenstein series, and calculate the Euler factor at p after p-
depleting (see §4.3).

In §5.1, we use the factorization in Theorem 2.13 to arrive at the two key technical results,
Theorem 5.6 and Theorem 5.7. Under Assumption 3.3 and the assumption that D satisfies the
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nonvanishing of a certain class number modulo 3 (for D > 0, we need 3 { hq(,/=p) and for
D < 0, we need 3 1 hQ( @)), we find a lower bound on the proportion of imaginary quadratic
fields K for which Fp/K has rank 1. In §5.2, we vary D instead. Assuming that w(n) is
sufficiently close to a Gaussian distribution, we find bounds on the proportion of D such that
Ep/K has rank 1; these are given in Theorem 5.11.

In §6, we address cubic and sextic twists. In §6.1, we obtain results similar to §4 but for cubic
twists. Since sextic twists are a composition of a cubic twist and a quadratic twist, we apply
our results from §5.1 to obtain similar results on sextic twists in §6.2. The results, paralleling
Theorem 5.6 and Theorem 5.7, are given by Theorem 6.6 and Theorem 6.7.

Finally, in §7, we positive lower bounds on the proportion of D for which Ep/Q has rank 0 and
1, under similar assumptions. Given the assumptions before, plus the additional assumption
that 31 N := cond(F), in Theorem 7.1 we find that Ep/Q has rank 0 for at least ¢(N of all such

D, and rank 1 for at least 28 ) of all such D. As an easy corollary, we conclude Conjecture 1.4
for certain elliptic curves.

Acknowledgements. The author would like to thank Daniel Kriz for supervising this project,
mentoring the author, and providing much needed guidance. The author also thanks Jonathan
Love and Professor Andrew Sutherland for many helpful discussions and feedback.

2. FACTORIZATION OF MEASURES

We follow the notation in [Gro80]. Let p be a prime, K = Q(v/—C) an imaginary quadratic
field where p splits, x a finite even Dirichlet character on Gal(K (pp)/Q), Xk the restriction
of x to Gal(K (pip~)/K), and Yo the composition of y with some fixed injection Q < C. Let
€ be the quadratic character modulo C' and w the Teichmiiller character. We define A\, Ao, A3
as in [Gro80, p. 92|, and obtain the formulas (x, A1) = L,(0, xx), (X, X2) = L,(0, xew), and
(X, A3) = L,y(1,x7 "), as in |Gro80, p. 93].

2.1. Dirichlet characters with conductors a prime power. We start with the classical
factorization L(s, (Xk)oo) = L(S, Xoo€) L(S, X ) and the functional equation for L(s, x):

Ko =10 -0 e (£) gt
rE \r) ek
where I' is the gamma function, k is the conductor of y, 7 = Eﬁzl x(n)e?™™/* is the Gauss
sum, and a = 0 if x(—1) =1 while a = 1 if x(—1) = —1.
Proposition 2.1. L'(0, (xx)s) = L(0, Xoo€) L' (0, Xoo)-

Proof. By differentiating,

L'(5,(Xx)oo) = L' (8, Xoo€) L(8; Xoo) 4 L(8, Xoo€) L' (8, Xoo)-
Setting s = 0 yields

L0, (XK )oo) = L'(0, Xoo€) L(0, Xoo) + L(0, Xoo€) L'(0, Xoo)-
But since xoo(—1) =1 = a =0, we have

1 12
L(0, Xoo) = L(LXK)F (3) (E) &

Notably, ﬁ = 0, which concludes the result. O

The explicit formulas of Dirichlet and Kronecker are as follows:

o [/(0,(XK)x) = —W}T > 4 Xoo(a) log FT(a) [Gro80, p. 91|,
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o L(0,x)= -7, $x(a) = =B for f the conductor of x [Gro80, p. 88]

o L(1, Xoo) = —9(Xoo) 34 Xa (@) log C* (@) [Gro80, p. 91] where g(x) = $ >1_, x(a)e* /!
for f the conductor of x [Gro80, p. 88|.

Proposition 2.2. L'(0, xo) = g(XQ“)L(l,Xz).
Proof. By differentiating, we have

1—s+a
Do) =L(1 - s, )22 (
)

_ ,(¥) . F(lngra E 5 g(X)
5 L1537 (o)’ <7T) i
~log(k/m)L(1 — s, ng(;;;) (g) Zg(j)z |
Since Yo (—1) = 1, we have a = 0. Setting s = 0 yields
L'(0, Xoo) :L/(l’XT")FrES)) @) g(ﬁ;)’
TR (R gxee)
— - L(1,X) T(0) <;) Tr ,
') C(3) (F)? glxeo)
_1og(k/ﬁ)L(1,Xoo)FF§g>) (g) ! g(%/;).

Note that the Laurent series of I'(s) is I'(s) = £ + ag + a1s + ... which implies that

L _, T _ S tar+... .

ro) 7 r02 \L+24+. )|,
Furthermore, I'(1/2) = /7. Combining these, we find that three of the terms cancel, which
yields L'(0, xoo) = — 2220 1,(1, %) O

Using the identity L(1, Xoo) = —9(Xoo) D4 Xoo(@) log CT (@), and the fact that 7(Yoo)g(Xeo) =
T(Xoo)T(Xoo) _ ‘\/fﬂQ = 1, we find that

f
L'(0, Xo0) = me )1og C*(@)oc-

Now, combining these with the fact that L(O, Xoo€) = —Bi y.e, we find that

a)log F"(a)os = (= Biyue) (——Zxoo ) log C" (a)eo )

6p" "

or equivalently
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Proposition 2.3. The equation

—3p" By e Z Xoo(@)log C ™ (a Z Xoo(@)log F(a) s

holds for all p.
Remark. This is [Gro80, (3.5)], but he only proves it for split p.

Now recall that C*(a)« and F(a)s are p-units in the field M,» = Q <cos —) Let E(M,r)

denote the group of all p-units. It is a finitely generated subgroup of R*. Now consider
the complex vector space C ®z E(M,). This is isomorphic to the regular representation of
A = Gal(M,-/Q). Now note that for all o € A, due to transport of structure, we have that

(Zxoo e CH( ) 5 e(0) 82,0 (00) <0G ) T elor0) 8. 0),
=X (0 (Zxoo ) ®7 C*(a) )

<Zxoo ) ®z F*( ) Zxoo ) ®z F*(00)s Zx;ol(a);xoo(aa) ©z FH(00)o0,
=X (o (wa ) ®z FH( )).

This implies that both 3~ 4 Xoo(a)®2C T (a)s and 3 4 Xoo(@)®z F T (a)w lie in the x ! -eigenspace
of C ®z E(M,r), which is one-dimensional. Therefore

ZXOO ®Z CJF ZXOO ®ZF )

for some ¢ € C. Consider the map
v:C®z E(My) — C,
defined by v(c ® a) = cloga. This map is clearly C-linear, so

ZXOO ®ZC :6 ZXOO ®ZC )oo)

Applying v to both sides of ¢ 4 Xeo(@) ®z CT(a)oo = Y 4 Xoo(@) ®z FT(a)s yiclds that
6 _3prBl7Xoo€'
In particular, note that E(M,) C Q. We can actually say that

Proposition 2.4. As elements of Q ®z E(M, r), we have

_3pBIXoo€ZXoo ) @z C*(a Zxoo ) @z FF(a)oc-

Now take some ¢ : Q < C,. Applying (1 ®z log,) © ¢ to both sides, we find the following
equality in Cp:

—3p" leeZX )log, C(a), —Zx(a)logpF+(a)p.

A
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Now consider the explicit formulas provided by [Gro80, p. 93]:

Ly(0,xK) = —5=9(x " Zx a)log, F* (a)y,

LP(07 XGCU) = _Bl,xea
Ly(L,x™") = —g(x™") Y x(a)log, C*(a),.

A

Putting these together yields the p-adic identity

Proposition 2.5.
LP<O7 XK) = Lp<07 X‘Ew)Lp(L Xﬁl)'

Now, following [Gro80, p. 93|, there exist measures Ay, A3 such that for any finite even
Dirichlet character x of conductor p”, we have

(X, A2) = L,(0, xew),
(X, As) = Lp(L,x71).

Now define a measure \; given by

<X7 >‘1> = Lp(oa XK)
Then we have the equality
<Xa )‘1> - <X’ )‘2><X7 >‘3>

for all finite even Dirichlet characters y with conductor p”. Thus we have that
Theorem 2.6. A\ = Ay - A3.

2.2. Generalization to conductor not a prime power. We will now work more generally
and extend to the remaining cases. We fix f to be some positive integer with at least two distinct
prime divisors. We again start with the classical factorization L(s, (Xx)oo) = L(S, Xoo€) L(S, Xoo)
and the functional equation for L(s, x):

D) (1
L(s,x) = L(1 - S,X)@ <;) W,
where T is the gamma function, f is the conductor of y, 7 = Y2/ _| x(n)e?™/f is the Gauss
sum, and a = 0 if x(—1) =1 while a = 1 if x(—1) = —1.
Proposition 2.7. L'(0, (xx)s) = L(0, Xoo€) L' (0, Xoo)-
Proof. By differentiating,
L'(s, (XK )s0) = L'(8, Xoo€) L(8, Xoo) + L(5, Xoo€) L' (5, Xoo)-
Setting s = 0 yields
L0, (Xx)oo) = L'(0, Xoo€) L(0, Xoo) + L(0; Xoo€) L'(0; Xoo)-
But since xoo(—1) =1 = a =0, we have

o (5)

= 0, which concludes the result. l

L(0, Xo0) = L(1, X0)

Since (0)

We have the following explicit formulas:
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o L(0,x)= -7, fx( a) = —By, [Gro80, p. 8],

o L(1,X0) = >}°° S axod(a)log CF(a)s [Gro80, p. 88] (note that this is for general
conductors f),

e I/(0,x) = —tszl(f) Y e x(¢)log |E(c)| [Sta77, p. 281], where x is a ray class character

modulo f, w(f) is the number of roots of unity equivalent to 1 mod f, and f is the
conductor of y.

Note that CI(f) = (Z/fZ)*, but A = Gal(Q(cos —)/Q) (Z)fz7)*] +1.
Proposition 2.8. L'(0, xoo) = —3 > 4 Xeo(@) log CT(a) o

Proof. First note that the classical factorization (with value a = 0) yields

Ls,xa)T(6/2) = L1 = s T - 9/2) (1) 70

In particular, consider the left hand side’s power series expansion around s = 0: although
L(s, Xoo) vanishes at s = 0, I'(0) has a pole of order 1. But since the residue of I'(s/2) is 2, we
have that

Xoo _
210, xoo) = L(1, xz )T (1/2)V/ f/1 /7 = T(Xoo) L(1, Xo0 ).
Now using Gross’s formula, we find that
L OXoo :__ZXOO logCJr )

Proposition 2.9. L'(0, (xk)x) = —é Y- ax(a)log Ft(a).

Proof. Note that we have a quotient homomorphism between the ray class group C modulo f,
isomorphic to (Z/fZ)*, with A = Gal(K/Q) = (Z/fZ)*/ £ 1. Furthermore, w(f) = 1 since K
is totally real. Then [Sta77] gives the result

L0, (xK)oo) = wa )log | E(c)|.

But note that

|E(c)]” = E(c)E(—c) = Fy(a)Fy(a) = Fy(a)Fy(—a)
— log F'*(a) = log Fy(a)F¢(—a) = log E(a)E(a) = log |E(a)| + log |E(—a),
so we have

L0, (Xk)s) = 6fZXoo a)log F'* (a).

Now, combining these with the fact that L(0, xoo€) = —Bi y..c, We find that

ZXOO 1OgF+ ) <_Bl,Xooe ( ZXOO logCJr ) )7

or equivalently

Proposition 2.10. The equation
—3fleoerxoo )log C*(a Zxoo )log F*(a)u

holds for all f.
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Remark. This is [Gro80, (3.5)], but he only proves it for split p and f = p”. Note that xoo
depends on f.

Now note that C*(a)s and F(a)s are units in the field My = Q (cos 27”) (In particular,
[I a-emn=em=1
a€(Z/f2)% J+1

which holds whenever f has at least two distinct prime divisors.) Let E(My) denote the group
of all units. It is a finitely generated subgroup of R* of rank |A|—1, by Dirichlet’s unit theorem.
Now consider the complex vector space C @z E(My). This is isomorphic to the quotient of the
regular representation of A = Gal(M;/Q) by the subspace spanned by (1,1,1,...). For all
o € A, due to transport of structure, we have that

(Z Xoo(@) @z C*(a ) ZXOO a) @7 C*(0a)0 = X (0) ;Xm(aa) ®z CF (00)n,
= X (0 (Z Xoo(@) @2 CF (@) ) :

o (XAJ Xoo(a) ®z F*(a ) Zxoo ) ®z F*(00)0 = X (0) XA:xoo(cm) Rz FF(00)o,
=X (0 (Z Xoo(@) ®z F(a)s ) .

This implies that both Y, Yoo (@) ®2C T () and > 4 Xoo(a) @z F 1 (a)s lie in the x ' -eigenspace
of C ®z E(My), which is one-dimensional since A is abelian. Therefore

cZXoo ) ®z Ct(a ZXOO ) @z FF(a)s

for some ¢ € C. Consider the map
v:C®z E(My) — C,
defined by v(c ® a) = cloga. This map is clearly C-linear, so

Zxoo ) @z C(a _C’VZXoo ) ®z C*(a)oo)-

Applying v to both sides of ¢ , Xoo(a) Rz CH (@)oo = D4 Xoo(@) ®z FT(a)o yields that
= =3[ Bl yue:

In particular, note that E(M;) C Q. We can actually say that

Proposition 2.11. As elements of Q ®y E(Mf) we have

—3fBl X oo€ Z Xoo ®Z C+ Z Xoo ®Z F+ )

Now take some ¢ : Q — C,. Applying (1 ®z log,) o ¢ to both sides, we find the following
equality in Cp:

—3fBiye > x(a)log, C*(a), = Y x(a)log, F*(a),,.

A
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Now consider the explicit formulas provided by [Gro80, p. 93]
Ly(0, xx) = Zx a)log, F*(a),,
L, (0, xew) = —31 o>
Ly(1,x7") = —glx Zx a)log, C*(a),.

Putting these together yields the p-adic identity

Proposition 2.12.
Ly(0, xx) = Lp(0, xew) Ly(1, x71).
Now, following [Gro80, p. 93] there exist measures Ay, A3 such that for any finite even Dirichlet
character y of conductor f, we have

(X, A2) = Ly(0, xew),
(X As) = Lp(1,x71).

Now define a measure A\; given by

06 A1) = Lp(0, xx)-
Then we have the equality
(G AL = (X A2) (X As)
for all finite even Dirichlet characters y with conductor f. Combining with Theorem 2.6, we
have the following factorization:

Theorem 2.13. For any finite even Dirichlet character x, with (x, A1) = L,(0, xk), (X, A2) =
L,(0, xew), and (x, A3) = L,(1,x "), we have that A\; = Ay - As.

3. ASSUMPTIONS AND CONVENTIONS

For the remainder of the article, we fix several assumptions. We will restate them throughout
the article, but organize them here for convenience. We will let K denote an imaginary quadratic
field and Ak the discriminant of K. We will let E/F denote an elliptic curve over a number
field F' (usually either K or Q) with conductor cond(E) = N. Let f(q) be the modular form
associated to E. We assume that £ will be residually reducible modulo 3:

Assumption 3.1 (Residually reducible). All elliptic curves E will be residually reducible modulo
3. In other words, the 3-adic Galois representation ps : Gal(F'/F) — Aut(T3(E)) = GLy(Z3)
reduced modulo 3 to ps : Gal(F'/F') — G Lo(F3) is reducible.

We will also require that E satisfies the Heegner hypothesis relative to K in many situations,
as found in [BCD'14, p. §]:

Assumption 3.2 (Heegner hypothesis). For every prime ¢|N, then Ag is a quadratic residue
modulo /.

We will focus a great deal of attention to quadratic twists of E/F. Let E be an elliptic curve
given by y?> = 2% 4+ ax + b. Then for D’ € F such that F(v/D') D F, the quadratic twist
of E/F by D' is given by D'y? = 2 4 az + b, and denoted E”") with modular form ") (q).
We will primarily focus on D’ € Z. We will later see that when E/F is residually reducible,
then fP)(q) = EX?X?(q) (mod 3) for some Eisenstein series F and integer D, and therefore
we will denote Ep = EP).
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In a similar manner, we will denote E,; 3 the cubic twist of E/F by d, where the cubic twist
is given by y? = 23 + ¢ y? = 23 + de.
Finally, we will denote by Assumption 3.3 the following series of assumptions on (N, D).

Assumption 3.3. We make the following assumptions:

e For all primes ¢ > 3, if vy(N) = 1, then £ =2 (mod 3),
e gcd(N, D) =1,

e 2/ ND,

e u3(N) # 1.

4. CONGRUENCES MODULO p

4.1. Congruences of L-series and Eisenstein series. Let
f(Q) = Z anq"
n>0

be the modular form attached to an elliptic curve E. Let the 3-adic Galois representation be
pr; we will assume that pg is always residually reducible modulo 3. Let

Ey¥(q) = L(L—k,x)+ Y_ o™ (n)g"

be an Eisenstein series, where

oM (n) =" An/d)p(d)d.
dln

Proposition 4.1. The Galois representation of E;ﬂ@ 15 1somorphic up to semisimplification to
¥ @ Yy where x is the cyclotomic character.

Proof. The Brauer-Nesbitt theorem implies that up to semisimplication, pg, is determined by its
characteristic polynomial, or equivalently, trace and determinant. Furthermore, the Cebotarev
density function implies that the Frobenius elements are dense in the Galois group. Since pg,
is a continuous function, it suffices to check that trace and determinant match on the Frobenius
elements ¢ for each prime. We have

tr(6) = [¢'1ES" (q) = oV (€) = () + P(0)e,

which confirms that the trace function matches. The determinant yields

det(€) = € = ()Y (0)x(0),
and both functions match. O

Proposition 4.2. Suppose pg is residually reducible, i.e. the representation mod 3 is iso-
morphic to x1 @ x2 up to semisimplification. Then pg = P xm (mod 3), where EXM*M g
the Eisenstein series with xy a quadratic character, and x1 = xym and x2 = xmX for x the
cyclotomic character. Furthermore, f(q) = EX**(q) (mod 3).

Proof. Since F3 = {£1}, it follows that xi, y2 are quadratic characters. By Brauer-Nesbitt, it
suffices to check that the trace and determinant functions agree on Frobenius elements, which
are dense in the Galois group by the Cebotarev density theorem. Checking the determinant
function, we have that
X(€) = € = det(£) = x1(€)x2(0)-
Thus
X2 = X1 X = XiX-



12 MERRICK CAI

Letting x; = xu for some quadratic character modulo M, we have that

X1 = XM, X2 = XMX-
Now, the trace functions yield that

ar = xar () +xar(Ox(0) = xnr (O +x2(0)0 =Y xar(E/d)xar(£)d = XX (£) = [¢"|EX* (q).
dje

Since the coefficients of the two modular forms agree on prime indices, they agree on all non-

constant terms. Thus f(q) — E5**(¢q) = ¢ (mod 3), where the left hand side is a modular

form of weight 2, and thus the right hand side must also be a modular form of weight 2. By
[Ser73], ¢ = 0, and we have that f(q) = E5**"(q) (mod 3). O

4.2. Congruences of quadratic twists. Consider some arbitrary squarefree D' € Z. We
will study the quadratic twist of f by D’ and write it as f(P)(q), with the elliptic curve
E = y? = 2 +ax+b becoming EP") := D'y? = 23 +ax+b. We will assume that pg is residually
reducible. By Proposition 4.2, we have f(q) = EX**(q) (mod 3) for some quadratic character
Xar- Since fpi(q) =3, 50 Xpr(n)ang™, it follows that fp/(q) = ESM PP (¢) (mod 3). Since
X is again a quadratic character, we may write xp = xarxp for some squarefree D € Z. Thus
every quadratic twist of an elliptic curve whose Galois representation is residually reducible
mod 3 is congruent to EXP*P(q) modulo 3, where xp is some quadratic character. From now
on, we will write the quadratic twist of the elliptic curve EP?") as Fp, and the associated modular
form as fp, where xp = xmXDr-

4.3. Stabilizations. We follow [BDP*13| and describe the p-depletions/stabilizations. Let
f(q) = >, a,g" be the modular form of an elliptic curve £E/F. Then the p-depletion is given

by
Plo) =) a.q"
pin

Suppose p is a good prime; then f° = f|VU — UV, where U and V are given by [BDP*13,
p. 1085].

Let N be the conductor of E/F. If a prime ¢?|N, then a, = 0, hence there is no need to
change the value through ¢-depletion. If a prime ¢|N with v,(N) = 1, then ay = £1, so we may
use 1 F V, instead of VU — UV. In particular, 1 — a,V =1 — T,V suffices.

We assume the Heegner hypothesis [BCD" 14, p. 8], Assumption 3.2: for every ¢|N, the
ideal (¢) splits in Op as [- 1.

Proposition 4.3. The Euler factor at { of S';j for some €|N is 1 — x71(1).
Proof. Following [BDP*13, p. 1135], we set

S =D (@) 0P (@ x (Ao o, o))
[a]

Let ap = £1. Then
07 f7(a x (Ao, to, wo)) = {67 f|(1 F T,V) }(a * (Ao, to, wn)),
= 07 f(ax (Ao, to,wo)) F LPacd’ f(Tax (A, to, wo)),

SO
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Corollary 4.3.1. Assuming the Heegner hypothesis, the Euler factor at ¢ # p does not vanish
modulo p when { # 1 (mod p).

Proof. Since x(I) = ¢, it suffices to have 1 — ¢! £ 0 (mod p) <= ¢ # 1 (mod p). O
If f1(q) and f5(q) agree on all coefficients [¢"] f;(¢) whenever p; 1 n for all p; € X where X is a
finite set of primes, then we may take the p;-depletions to force them to be equal. In particular,

(@) = f3*(a),
where f/*(q) indicates the modular form f;(q) after p; depletions for each p;.

5. CONGRUENCE OF MODULAR FORMS

5.1. Varying K. We follow the discussion from section 3. For the remainder of this section, we
set p = 3. Suppose we have an L-series attached to an elliptic curve £ whose Fourier expansion
is f(q) whose Galois representation pr modulo 3 is residually reducible. Then proposition 15
implies that pp = p XM X (mod 3), the Galois representation modulo 3 of the Eisenstein series

EXMXM  Now consider the quadratic twist by D', so that f(P)(q) = 3 xp/(n)ang”, where yp is
the Kronecker character. It follows that ppw) = ppxpon (mod 3) where xp = xp/xa is some

quadratic character. Now denote Ep = EP) and fp(q) == f(q), so that we parametrize the
twists by the corresponding Eisenstein series. In particular, [¢/]f(q) = [¢/| EX?*P(¢q) (mod 3)
for all £{ cond(Ep) = ND? where N = cond(E). We thus have that fp(q) and EXPXP(q) are
congruent modulo 3 everywhere except possibly at indices divisible by some bad prime ¢.

Let N = cond(FE). Assume p{ ND. If gcd(N, D) = 1, then cond(Ep) = level(fp) = ND?.
On the other hand, D = cond(xp), so level(EX?"*?) = D% We need only stabilize (¢-deplete)
at primes £ such that v,(ND?) = 1. Due to Corollary 4.3.1, we will require all such ¢ to satisfy
¢ # 1 (mod 3) for the rest of the paper. This is noted in the section on assumptions. For each
of these ¢, we have £ { D, so ( is a good prime for Ey?*?. On the other hand, for ¢|D? it
immediately follows that ¢2|D? so [¢‘]EX?*P = 0, and since (2| ND?, then [¢‘|fp = 0. Hence
there is no need to (-deplete E}”XP(g) at such primes (it is already zero), and we only need to
consider the primes ¢ for which v(N) = 1.

Denote this set by X. Then X is a set of bad primes for fp(q), but good primes for EX?*P(q).
Take Z to be the product of £ € X.

Note that S';f(f) = 9 (f%) (mod p) and fp(q) = ExX"*"(g) (mod p), so by the g-expansion
principle, we have

Proposition 5.1. For infinity types x of type (k + j,—j) with j > 0, we have S';(( [52}) =
xplpZ
S)b((E;(D xplp ]) (mod p).
Setting k£ = 2 and taking the limit of j,, = p™ — 1 as m — oo gives, by continuity,
Proposition 5.2. For Ng the norm character of type (1,1), we have

Z , Z
S (FB7)) = SE, o, (BXPPPP) - (mod p).

In fact, more generally:

Proposition 5.3. Suppose we have two modular forms f and g with Galois representations py
and p, such that py = p, (mod p). Then S;(fm) = S;(gm) (mod p), where N is such that
[¢°1f = [¢‘]g (mod p) whenever L1 N, and x is type (k + j,—j) for j > 0. Furthermore, this is
true for x = Nk, the norm character of infinity type (1,1).

Proof. The stabilization at £ yields [¢‘]f = 0, and thus after stabilizing at all £|N, it follows

that
UN = [¢"]fM = [¢"l¢™ =0 (mod p)
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and by hypothesis, they are already congruent modulo p when ¢4 N. The g-expansion principle
then implies that
b f[N]\ — @b (,[N]
To see that this holds for y = N, take x of type (2 4+ p™ — 1,1 — p™) as m — oo. Since

S; is continuous in Yy, it follows that the limit is (2 —1,1) = (1,1) and the congruence for N
holds. O

Define L, o(w, x) = S;(w) as in [Kri21, Definition 8.8]; we’ll write L,(w, x) as shorthand.
Proposition 5.4. If S;(E;‘D’XD[])Z}) # 0 (mod p), then Ep/K has rank 1.

Proof. Wehave Sk (Ex? PPy = L (x> P/ Nyexp) and S% . (F57) = Ly(£57, Nicxo).

From Proposition 5.2, Lp(EgD’XD[pZ],NKXD) = Lp(fg’z],NKXD) (mod p). By [Kri2l, Theo-
rem 9.10], L,(fp,Nkxp) = QA t)Z,(fp,Nxxp)logy, (Pk), where Pk is a Heegner point.

Now suppose S;(EQCD’XDLDZ}) # 0 (mod p). By Corollary 4.3.1, due to the Heegner hypothesis,
none of the Euler factors vanish, and thus L,(w,Ngxp) # 0 (mod p) = L,(w,Ngxp) # 0.
It follows that logp, (Px) # 0, and hence Pk is not a torsion point, and it follows that Ep/K
has positive rank. A theorem due to Kolyvagin [Kol89] (for example, see [Dar06, Theorem 2.9])
implies that in fact Ep/K has rank exactly 1. U

Adopting the notation from [Kri21, Theorem 9.11], for D > 0 we have that
SNXD (E%CD’XD) = Lp,a<07 (XD)K),

N-1

=, (0, .

:Q(A,t)w Y (CNO@) S x5 (@) log, gala  (4,1)).
giXp acCl(Ok) a=1

By Theorem 2.13, this sum is equal to £,(0, xpxxw)L,(1, Xp), where £, is the Katz p-adic
L-function. By [WasQ? Theorem 5.11|, we have that

‘CP(Oa XDXKW)‘CP(L XD) = _Bl,XDXK'CP(lv XD) = Bl,XDXKBLXDuF1 (mOd p)v

so we conclude that
SNXD(E§D7XD) = BLXDXKBLXDW_1 (mOd p)'
If D <0 then yp is odd, so

=00, (x _
Q(A,t)w > (x'Nk) Z Xp'(a)log, ga(ax (A, 1)) = L£,(0, xpw)Ly(1, XpXK)
9\XD aeCl(Ox)
instead. By [Was97, Theorem 5.11] we have that
£p<07 XDW>‘CP<17 XDXK> = _BLXD‘CP<17 XDXK) = Bl,XDBl,XDXKw*1 (mOd p)
This implies that for D < 0, we have
Stixp (E37™) = Biyp Biypxxw-1  (mod p).

Hence

XD>XD) — BLXDW_IBLXDXK (mOd p) D >0,
SNXD (EQ ) =
Biypxxw-1Bix, (modp) D <O.
For D > 0, this turns out to be h@(\/—g—D)h@(\/W)- For D < 0, this turns out to be
ho(/=s007) ho(vD):

Proposition 5.5.

S, (BX00) = § Mowv=amy ooy (mod p) D> 0,
X =
b hQ(m)hQ(\/ﬁ) (mod p) D <0.
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We now turn to calculating the proportion of A such that p = 3 ¢ ho(/=3p)ho(vDag): We
will address the other case shortly after.

We assume the Heegner hypothesis. This requires that Ag is a quadratic residue modulo all
primes dividing cond(Ep), except for 3. Letting N = cond(FE) and ged(N, D) = 1 such that
24 ND, then cond(Ep) = ND?. Furthermore, v3(N) # 1 (due to the conditions provided by
Nakagawa-Horie in [NH88, p. 21] or [Bye04, Lemma 2.2|). Recall that Assumption 3.3 denotes
the follow conditions on (N, D):

For all primes ¢ > 3, if v,(N) = 1, then ¢ = 2 (mod 3),

e gcd(N, D) =1,
e 2t ND,
[ Ug(N) 7£ 1.
Theorem 5.6. For fired N, D with D > 0 satisfying Assumption 3.3 and 3 1 ho/=3p), the

31)3(ND))

proportion of Ak such that 31 hg/pag) is at least 9—1-w(ND/ _

Proof. For each 3 # ¢|N D, the proportion of Ax which are quadratic residues mod ¢ is é;—l} > %

The number of such primes is w(ND/3%NP)) 5o the proportion of such Ak is greater than
#ND)). Of this set X, [Bye04, Lemma 2.2] implies that

2w(ND/

|{AK € X and 3J[h(@(\/m)}| S l

X >3
Hence for a fixed D, the proportion of Ax which are quadratic residues modulo all ¢|D and
3 )( h@(\/W) is at least 9—1-w(ND/3v3(ND)) :

We have the immediate

Corollary 5.6.1. For fizted N = cond(E) and D > 0 satisfying Assumption 3.3 and 3 1
ho(v=3p), the proportion of imaginary quadratic fields K which admit a quadratic twist of E by
the fized D is positive.

We also immediately obtain information about the rank of Ep over K.

Corollary 5.6.2. For fized N, D with D > 0 satisfying Assumption 3.3 and 3 1 ho/=3p), the

proportion of imaginary quadratic fields K such that Ep /K has rank 1 is at least 21—« (VD/3"3)

Proof. Theorem 5.6 implies that the proportion of K with 3 { hov=spyho/pag) is at least
9-1-w(ND/33™P) - Cymbining with the fact that

SNXD (E%CD’XD) = hQ(m)hQ(m) (mod 3),

we have that 3 { Sy, (E537*”). Now applying Proposition 5.4, we find that every such K also
satisfies that Ep/K has rank 1. O

We also address the D < 0 case. Once again, let N = cond(F) and ged(N, D) = 1 with
24 ND, and v3(N) # 1.

Theorem 5.7. For fized N, D with D < 0 satisfying Assumption 3.3 and 3 1 howp): the

proportion of Ak such that 31 h@(%) is at least 2—1—w(ND/32(ND))

Proof. For each 3 # ¢|N D, the proportion of Dx which are quadratic residues mod ¢ is é;—l} > %

The number of such primes is w(ND/3%NP)) 5o the proportion of such Ay is greater than

9—w(ND/33 D)) " hig set X is given by a system of congruence conditions, modulo all 3 # ¢| N D.
Of this set X, [Bye04, Lemma 2.2| implies that

‘AK € X and 3J[h(@(\/m)
| X

1
> —.
-2
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Hence for fixed D, the proportion of A which satisfy the Heegner hypothesis and e { hq/=spaz)
is at least 2~ 1-w(ND/3vs(ND)) g

Once again, we find two corollaries.

Corollary 5.7.1. For fized N = cond(E) and D < 0 satisfying Assumption 3.3 and 3 1 howp):
the proportion of imaginary quadratic fields K which admit a quadratic tunst of E by the fixed
D 1is positive.

Corollary 5.7.2. For fired N, D with D < 0 satisfying Assumption 3.3 and 3 { h@(\/ﬁ); the pro-

portion of imaginary quadratic fields K such that Ep/K has rank 1 is at least 9—1-w(ND/3"s(ND))

Proof. Theorem 5.7 implies that the proportion of K with 3 1 hg(/p)how/~spay) is at least
9-1-w(ND/33™P) " Cymbining with the fact that

S, (EZ777) = hoymyha(/=spag)  (mod 3),
we have that 3 { Sy, (E537*”). Now applying Proposition 5.4, we find that every such K also
satisfies that Ep/K has rank 1. O

5.2. Varying D. In this paper we will usually fix D and vary K. Let us now fix N and K and
vary D. The first result we have is considering the proportion of D which satisfy the Heegner
hypothesis.

Theorem 5.8. For fived N, K, the number of 0 < D < X satisfying the Heegner hypothesis is
asymptotic to X/(log X)'/2.

Proof. For each 3 # (|N D, we need Ak to be a quadratic residue mod /. Let Ag = —2¢ H@]\i1 D
where the p; are distinct odd primes and e € {0,2}. We need

() =1

7

since the factor of 2 is always a square. Quadratic reciprocity implies that (%) =(-1) Pt ( p%)

for each p;. In particular, when ¢ is fixed, the sign depends only on p;, and is also fixed. Then
Ag pi—1l ¢—1

(—) = 1 is equivalent to the condition that an even number of the (—1)7z 2 (f) are —1,

(3)-Ie = 2).

and thus in the product

it suffices to allow anything in the first M — 1 indices, and the last index is determined in order
to yield a product of 1. Note that if £ = p; for any i, then it is always a quadratic residue. Thus
at most pg; of £ have Ak not a quadratic residue (mod ¢), and it follows that the proportion
of ¢ with Ag a quadratic residue (mod ¢) is at least % Even stronger, Ak is a quadratic
residue (mod ¢) whenever ¢ € S C Z/A}W7Z where Ay = A or 4Ag, and |S| > |A%|/2. Tt

follows that D can only be constructed from such primes.
From the Wiener-Ikehara Tauberian theorem [Ser74, Theorem 2.4|, we find that the propor-
tion of D < X such that D is constructed from this set of primes is asymptotic to X/(log X)'/2.
O

Suppose we let D vary and count the proportion of pairs (D, K) (equivalently pairs (D, Ak))
such that Fp/K has rank 1. Corollary 5.6.1 and Corollary 5.6.2 imply that the proportion of
Ay for fixed D depends only on D, and in particular, on the number of prime factors of D.
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Thus it suffices to consider only positive D, as the sign does not matter. Consider the interval
0 < D < X. Then we seek to measure

1 X
PO =52 27
D=1

By summing over values of w(n) instead, we have

log X

F(X)= % » 2 #{D < X|w(D) = n}.

The final proportion will be at least 3 F(X). We will now find asymptotic bounds for F(X).
By Erdés-Kac [EK40], for 1 < n < X, w(n) follows a Gaussian distribution with ¢ =
Vloglog X and p = loglog X. Therefore we may assume that for sufficiently large X, w may
be approximated by a continuous distribution; we will assume that this continuous distribution
is sufficiently accurate and measure
X-(Y~loglog X)/+/loglog X 1 L 2
/ 277 e_5<7) dx,
0 oV2rm

F(X) ~ T(X) =

where Y = max{w(D)|D < X}. Since for large X, it’s clear that the upper bound exceeds 2.X

we may take
2X
1
S(X) = / 277 e
0 oV 2

S

()" 4o < T(X).

Substituting y = 27%, we transform the following integral, which is S(X) but extended from
—0o0 to oo:

/OO g () gy o (og2)u e > S(X).

0o oV 2

Let k = —M +log2 ~ 0.45. Then substituting u = 0% = loglog X, we have

1
S(X) = log X)° A(X) = B(X),
where

0 2

A(X):/ 277 ! e 2 (*5") dx,
5o oV 2T

B(X) :/ g L35 gy,
2X oV 2T

We will now bound A(X) and B(X) (both of which are positive values, since the integrand is
strictly positive).

Lemma 5.9. A(X) < W.

Proof. Take

ax) = [T e
0

oV 2w
Let N = = 02 = loglog X. Then we can write

1 o0 :1:2+23:N+N2)
AX) = exp | zlog2 — dx.
=575 | p( : o
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Now consider that

22 4+ 2N + N? > N x2(1—log2) x> N
rlog2 — e
2N 2N 2 N 2N 2

e—N/2

As a result, we have that A(X) < N—\/ﬂI(X)’ where I(X) = [© e~3v dr. But I(X) can be

solved using the well-known Poisson trick, which yields that I(X)? = 27N = I(X) = V27N,
so we have that A(X) < e N/?/y/N. O

With B(X), we can calculate it almost exactly.
Lemma 5.10. B(X) < ¢=2X*/loglog X

Proof. We have

1 o (@—N)2
B(X) = e T8 2= 55— (g,
(X) Nv2m /gx

The exponent rearranges to

N (x — N(1 —log2))? e~ 3 (1-(1-log2)%)
——(1—(1-1o0g2)? — — B(X) = J(X),
5 (1= (1—log2)%) 5N (X) v (X)
where
J(X) = / 6_(17(17212%2)1\7)2 dr = / 6—1:2/2N dr.
2X 2X—(1-log2)N
Using Poisson’s trick once again, we find
o'} e 5
J(X)2 < 27’(’/ T‘G_TQ/QN dr = 27TN6_(2X (1211vg2)N)
2X—(1-log2)N

As a result, we conclude that

N (2X — (1 —log2)N)?  2X2 N  2Xx?
log B(X ——(1—(1-log?2)?*)— = —4+2X(1-log2)—— < ———.
og B(X) < —-(1-(1-log2)?) - X (1-log2) - <~

O

Putting the above two lemmas together, we conclude that

1 1 1 1

— — <SX)<——
(log X)*  (log X)V/2/X  e2X?/loglog X (X) (log X )=’

which implies that

Theorem 5.11. Assuming that w is approximated by a (continuous) Gaussian distribution
sufficiently well, in the set Dx = {(D,Ax)||D| < X, K an imaginary quadratic field}, the
proportion P(X) of Dx (for X > 0) which yield a quadratic twist with rank 1 over K satisfies

1 1 1 1 1
ht _ _ PX)< —
2 ((lOgX)K (10g X)1/2\/)_( e2X2/loglogX) < ( ) < 2(10gX)H’

where k = log 2 — M ~ 0.45.
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6. HIGHER TWISTS

6.1. Cubic twists. Let f be the modular form associated to E, an elliptic curve over L =
Q(v/—3). We have that f = 6, (of weight 2) for some Hecke character ¢ of type (1,0), where

Oy = Y v(a)g"® €, € Z[[q]].
acOp,
Let xq : Gal(L(3/d)/L) — (Cs) be the associated cubic twist character, where (3 = *1%\/?3 is a
primitive third root of unity. Let f; be the modular form associated to E;3, the cubic twist of

FE by d, such that
fa =0, = Y Uxa(a)g"® € Z[q]].

acOyp,

Proposition 6.1. The modular forms f and fq are equivalent modulo 3 at all coefficients except
those which are not relatively prime to Nd.

Proof. For all n € Z with ged(n, cond(x4)) = 1, we have x4(n) =1 (mod (3 — 1). As a result,
for all n coprime to cond(xy) - cond(E) = Nd, we have

Y(n) = Pxa(n) mod (¢z — 1)O[[q]],
[

and thus we have f = f; mod ({3 — 1)OL[[q]] except at the coefficients of ¢™ for ged(n, Nd) # 1.
Since ((3—1)O,NZ = (3)Z and f, f; € Z][q]], it follows that f— f; € Z[[q]] and f— fa—G(q) €
(G —1)O[[g]] for some G(q) € Z[[q]] with G(q) = >_,ca(n.nay>1 9nd"- Therefore f— fi—G(q) €
Z[[q]], and hence

f—fa—G(q) € (G —1)OL[[ql] NZ[[q] = (3)Z][[q]].

As a result, f — f; = G(q) (mod 3), and therefore f = f; (mod 3) except at coefficients of ¢
for n not relatively prime to Nd. O

Proposition 6.2. The Galois representations of f and f; are isomorphic mod 3.

Proof. Let pp : Gal(Q/Q) — G’L(L Eln]) =[], GL2(Z,) be the Galois representation of E.
Let pg be the Galois representation of Fg 3, the cublc twist of ¥ by d. Let N be the conductor
of E, so that Nd is the conductor of E;3. Then Neron-Ogg-Shafarevich implies that p and p4
are unramiﬁed outside of N and Nd, respectively. As a result, the Galois representations factor
through Gal(Q™)/Q) and Gal(QW9 /Q, respectively, where Q™ is the maximal unramified
extension of Q outside of n. Now for all primes ¢ 1 Nd, the Artin map gives a Frobenius
element Frob, such that tr Frob, p = [¢‘]f and tr Frob, g d73[q£] fa. The prior discussion shows
that

f=/fs (mod3) = tr Frob,p = tr Frobyg,, (mod 3).

Furthermore, the Frobenius elements always satisfy det Frob, = . The Brauer-Nesbitt theorem
applied to p implies that p and py are characterized (up to isomorphism) by their characteristic
polynomials, and thus by the trace and determinant functions. We showed that p and p, agree
on the trace and determinant functions modulo 3 for all Frobenius elements Frob, with ¢ { Nd.
By the Cebotarev density function, the Frobenius elements have density 1 in the Galois groups,
and therefore all but finitely many of the Frobenius elements are dense in the Galois group.
Since trace and determinant are continuous functions, this implies that p and p, agree modulo 3
on trace and determinant on the entire Galois group, and thus they agree modulo 3 everywhere
(by Brauer-Nesbitt). As a result, we find that p = p; (mod 3). O

Proposition 6.3. If Sy, (f"¥) £ 0 (mod 3), then Ey3/K has rank 1.
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Proof. By Proposition 5.2, we have that
St (I = 82, (£) (mod 3).

Following [Kri21, Definition 8.8, we have 3, (f™N9) = L,(fV¥9 Ng) and Sy, (fc[lNd]) _ Lp(fc[lNd], Ngk).
From [Kri21, Theorem 9.10], we have

Nd — / ;INd
L(fi"" Nie) = w(A, D, (£ Nk) logg, , (Pr),
where Py is a Heegner point. As a result, if S&K( fINd) £ 0 (mod 3), then this implies that
Stuc(fa ") = S (SN £ 0 (mod 3) = 8, (1) #0 = logg, ,(Px) #0.
Now applying Proposition 5.4, we find that E;3/K has rank exactly 1. O

We assume the Galois representation pp modulo 3 is reducible. By Proposition 4.2, we have
that pg = xar @ xarx up to semisimplification.

6.2. Sextic twists. Consider the family of elliptic curves y? = 23 + ¢ over Q for ¢ € Q up to
isomorphism; denote this by C.. This family of elliptic curves has j-invariant 7 = 0. The sextic
twist by D, g6.p(C.), is the elliptic curve given by
y* = 2° + cD = (D*y)* = (D*v)* + cD" =g y* = 2° + D’
where F; = FE, denotes that F; is isomorphic to Fy over F'. Thus the sextic twist by D is a
function
96,0 : Ce > Cepr.
The quadratic twist by D on C., denoted by g p(C,.), is the curve
Dy? = 2 + ¢ g (D*y)? = (Dx)* + cD? =g y* = 2° + ¢D?,
SO
92,D(Cc) = Ceps.
The cubic twist by D on C,, denoted by g3 p(C.), is the curve
y® = D2’ + ¢ 2o (Dy)* = (Dz)* + ¢D? 2o y* = 2° + cD?,
SO
93.0(Cc) = Cep2.
We easily check that g5 p(C.) = Ccpr = g2.0(Cept) = g2,0(93,02(Ce)) = G230 © 93,0 © g3,0(Ce)-
As a result, we have that
96,0 = 92,0 © g3,p © g3,.p = g3 p2 © §2.D,

and it’s clear that these functions commute.

Proposition 6.4. The family of curves C. are exactly the elliptic curves which admit cubic
twests.

Proof. This family is precisely the family of elliptic curves with Weierstrass form y? = 23 +ax+b
with a = 0; in particular, this is exactly the family of elliptic curves with j-invariant 0, since
§(E) = —1728Y9 where A(E) = —16(4a® + 27b%) (see [Sil09, p. 45]).

On the other hand, an elliptic curve E admits a cubic twist iff it has CM by Q(v/=3) = Q((3).
Since the underlying field has characteristic 0, by [Sil09, cor. II1.10.2], this is equivalent to
Aut(E) = ps = (G) <= j(E) =0. m

Due to this, the family C. are the only elliptic curves which interest us.

Proposition 6.5. The Galois representation of any of the curves C. s residually reducible
modulo 3.
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Proof. Since this family of curves admits cubic twists, they have CM by L = Q(v/—3). The
prime (3) is ramified in L/Q, so let (v/=3) C Of, be the prime lying over (3). Then E[(/—3)] =
{x € El|la]Jx = 0Va € (vV/=3)} = {z € E|[V/=3]z = 0} is a group of order 3. This group is
defined over the Hilbert class field of L, which is L since the class number of L is 1. Now,
the group Gal(L/Q) is generated by o, the automorphism given by complex conjugation.
Since o((v=3)) = (V=3), it follows that E[(v/=3)] is defined over LNR = Q. As a result,
E[(v/=3)] € E[3] is a subgroup preserved by Gal(Q/Q), and thus pe, is residually reducible
modulo 3. U

Let N = cond(C.) and let D be some positive integer satisfying Assumption 3.3.

Theorem 6.6. For a fized ¢ (and thus N) and D > 0 satisfying Assumption 3.3 and 3 ¢t
ho(/=3m), the proportion of imaginary quadratic fields K such that ge p(Cc)/ K has rank 1 is at
least 21w (ND/33O)).
Proof. We have cond(gs p(C.)) = ND" for some nonnegative integer ¢. Since cond(gs p(C.)) =
ND?, it follows that the set of primes dividing cond(gs p(C.)) is a subset of the set of primes
dividing cond(g2,p(C..)). As a result, the subsequent cubic twist by D? yields an elliptic curve
whose conductor does not have any new primes dividing it (compared to N.D?), and therefore
does not require any more ¢-depletions.

As a result, any K which admits a quadratic twist of C. by D will also admit a cubic twist by
D?. This occurs when Ay is a quadratic residue modulo all primes ¢|N D, and by Theorem 5.6,

occurs for at least (1/ Q)H“’(ND/ 89)) of the Ak. Now applying Proposition 5.4, we conclude
that every such K also satisfies the property that g¢ p(C.)/K has rank 1. O

In particular, since every C, is isomorphic to the sextic twist of C; by ¢ (over a sufficient K),
it is of particular interest to study C; := y? = 2® + 1. Thus specializing Theorem 6.6, we have

Corollary 6.6.1. For fized D > 0 with 31 D and 3 1 hg/=3p), the proportion of imaginary
quadratic fields K such that g5 p(C)/K has rank 1 is at least 2717<(D).

Proof. By applying Theorem 6.6 with N = cond(C;) = 27, the result follows. U
Addressing the D < 0 case, we have the analogous results.

Theorem 6.7. For a fived ¢ (and thus N) and D < 0 satisfying Assumption 3.3 and 31 heg/p),

the proportion of imaginary quadratic fields K such that g6 p(C.)/K has rank 1 is at least
2—1—UJ<ND/3U3(ND))

Proof. We have cond(gs p(C.)) = £N D" for some nonnegative integer ¢. Since cond(g2,p(C.)) =
ND?, it follows that the set of primes dividing cond(gs p(C.)) is a subset of the set of primes
dividing cond(g2,p(C..)). As a result, the subsequent cubic twist by D? yields an elliptic curve
whose conductor does not have any new primes dividing it (compared to ND?), and therefore
does not require any more ¢-depletions.

As a result, any K which admits a quadratic twist of C. by D will also admit a cubic twist by

D?. This occurs when Ak is a quadratic residue modulo all primes ¢|N D, and by Theorem 5.7,

occurs for at least 271“(NP/33 ) o the Ay, Now applying Proposition 5.4, we conclude

that every such K also satisfies the property that g¢ p(C.)/K has rank 1. O
Once again specializing to C;, we have:

Corollary 6.7.1. For fized D < 0 with 3 1 D and 3 { hg/p), the proportion of imaginary
quadratic fields K such that gsp(C1)/K has rank 1 is at least 2717%(P),

Proof. By applying Theorem 6.7 with N = cond(C;) = 27, the result follows. U
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7. RANKS OF TWISTS OVER Q

For some suitable elliptic curve F/Q, we have discussed the proportion of imaginary quadratic
fields K with Fp/K yielding elliptic curves of either rank 1 or rank 0. We will now consider
the ranks over QQ instead.

We will need the concept of a root number. The root number wg, i of an elliptic curve
E/K is the value wg/k € {—1,1} such that Lg/k(s) = wr/k Le/k(2 — 5).

Theorem 7.1. Fiz E with N = cond(E) and D satisfying gcd(N, D) = ged(N,6) = 1. Then

Ep/Q has rank 1 for at least 2 4 of all such D, and rank O for at least 4N of all such D.

N N

Proof. By [Kol89], Heegner points in £/ K exist iff wg/x = —1. Furthermore, if F/K has rank

1, then F/Q has rank wE/Q, and wg, /9 = (%) wgg- 1t follows that if Ep/K has rank 1,
then Ep/Q has rank 1 if wg = —1.

For D > 0, Corollary 5.6.1 shows that when 3 ¢{ hg(/=3p), there exists some imaginary
quadratic field K (in fact, a positive density) such that Ep/K has rank 1, and thus it suffices
to check when wg/g = —1. Since wg/q is fixed, we check the proportion of D > 0 such that
(%) = =41 in each case. We have (%) = (%) which depends only on the residue of D
modulo N. There are exactly ¢(N)/2 quadratic residues and quadratic nonresidues, and thus
the proportion of D (assuming 3 1 hg(,/=5p)) is exactly % Now [Bye04, Lemma 2.2| implies

D

that for every m such that D =m (mod N) — (W) = —wg/q, then the proportion

|D>0| —3D=-3m (mod N), hg—3p) #0 (mod 3)|
|ID>0] —3D=-3m (mod N)|

S_(X,—3m,N) = >

N)lH

Since this holds for every such m, it follows that the proportion of such D satisfying (%) =
—wg)q is at least 3.

For D < 0, Corollary 5.6.2 shows that when 3 { h there exists some imaginary quadratic
field K (in fact, a positive density) such that Ep / K has rank 1, and thus it suffices to check

when wg/g = —1. Since wg/q is fixed, we check the proportion of D < 0 such that (%) ==+1
in each case. We have (%) = (%) (%) = — (%) which depends only on the residue of D
modulo N. There are exactly ¢(N)/2 quadratic residues and quadratic nonresidues, and thus

the proportion of D (assuming 3 1 hoy \/5)) is exactly %

that for every m such that D =m (mod N) — (%) = —wg/q, then the proportion

Now [Bye04, Lemma 2.2| implies

‘D<O\D m (mod N), hyip %0 (modS)‘
|ID<0|D=m (mod N)|

S (X,m,N) = >

[\D|>—t

Since this holds for every such m, it follows that the proportion of such D satisfying (%) =
—wg/q Is at least 1.
We conclude that in either case, the proportion of D with Ep/Q having rank 1 is at least

¢(N) 5 = ‘ﬁN . Analogously, when (%) = wg/qg, we find that Fp/Q has rank 0, and the same
result holds. 0

Noting that the assumptions hold for a fixed (positive) proportion of D, we conclude that
for elliptic curves satisfying the above assumptions, Conjecture 1.4 holds.

Corollary 7.1.1. For such E satisfying the assumptions of Theorem 7.1, the weak Goldfeld
congjecture holds.
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