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1 Introduction

1.1 Purpose of this note

This is a really short note explaining the “purpose” of Hopf algebras. At least when I learned them, the
definition of Hopf algebras was rather obtuse, and I couldn’t quite figure out what they did. The topic of
Hopf algebras came up in a discussion with Hunter Dinkins, which is when I found out that the notion
of Hopf algebras was very natural, contrary to my prior belief. Hopefully this short note can pass this
wisdom along to other people who are similarly confused by the rather complicated definition of Hopf
algebras.
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1.2 Layout

In the remainder of this section I’ll briefly give an overview of the definition of a Hopf algebra, as well as
some common examples. In §2 I’ll give the motivation for why this notion is actually completely natural.

1.3 The definition

Definition 1.3.1. Fix a field F. A Hopf algebra H over the field F is an F-vector space H, equipped
with maps:

• the multiplication map µ : H ⊗F H → H,
• the unit map η : F → H,
• the comultiplication map ∆ : H → H ⊗F H,
• the counit map ε : H → F,
• the antipode map S : H → H, which is an F-linear anti-automorphism of H,

and these satisfy numerous relations. Briefly: the multiplication and unit maps turn H into an F-algebra;
the comultiplication and counit maps turn H into an F-coalgebra, and the antipode map “intertwines”
these two structures by making the following diagram commute:

H ⊗ H H ⊗ H

H F H

H ⊗ H H ⊗ H.

S⊗id

∆

ε η

µ

∆

id ⊗S

µ

These are all a bit complicated, so for the convenience of the reader, I’ll briefly discuss some interpretations
of these maps.

1.4 Algebra structure

First and foremost, H should be an F-algebra. The multiplication map can be interpreted as any
multiplication operation on a ring. The unit map is essentially saying that there’s a copy of F inside (the
center of) H. The relations here are the standard ones for µ and η to give H the structure of an F-algebra.

1.5 Coalgebra structure

Formally, ∆ and ε just play the (categorical) dual role of µ and η: for any diagram that µ and η satisfy,
then ∆ and ε satisfy the same diagram but with all of the arrows reversed.

2



Merrick Cai Introduction

1.6 Antipode

There are many ways to try to interpret the antipode map. One characterization is using Sweedler’s notation:
suppose ∆(c) = ∑

(c) c(1) ⊗ c(2). Then the antipode satisfies the relation S(c(1))c(2) = s(1)S(c(2)) = ε(c)1.
Another characterization is using convolutions of maps H → H. Generally speaking, let’s suppose we

have a coalgebra C and an algebra A. Then to two linear maps f, g : C → A, we define their convolution
f ⋆ g to be the composition

C
∆−→ C ⊗ C

f⊗g−−→ A ⊗ A
µ−→ A.

Then the antipode is the unique linear map S : H → H for which S ⋆ idH = idH ⋆S = η ◦ ε as maps
H → H.

1.7 Examples

Example 1.7.1 (group algebra). Let H = FG be the group algebra of a group G.

(a) The comultiplication is ∆(g) = g ⊗ g for g ∈ G.
(b) The counit is ε(g) = 1 for g ∈ G.
(c) The antipode is S(g) = g−1 for g ∈ G.

Example 1.7.2 (coordinate ring of group scheme). Let H = F[G] be the ring of regular functions on a
group scheme G.

(a) The comultiplication is ∆(f)(x, y) = f(xy) for f ∈ F[G] and x, y ∈ G.
(b) The counit is ε(f) = f(1G).
(c) The antipode is S(f)(x) = f(x−1).

Example 1.7.3 (tensor algebra). Fix a vector space V . Let H be either the tensor algebra T (V ), the
symmetric algebra S(V ), or the exterior algebra Λ(V ).

(a) The comultiplication is ∆(1) = 1 ⊗ 1, and ∆(v) = v ⊗ 1 + 1 ⊗ v for v ∈ V .
(b) The counit is ε(v) = 0 for v ∈ V .
(c) The antipode is S(v) = −v for v ∈ V .

Example 1.7.4 (universal enveloping algebra). Let H = U(g) be the universal enveloping algebra of a
Lie algebra g.

(a) The comultiplication is ∆(X) = X ⊗ 1 + 1 ⊗ X for X ∈ g.
(b) The counit is ε(X) = 0 for X ∈ g.
(c) The antipode is S(X) = −X for X ∈ g.
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2 Motivation

So far, the above definitions probably aren’t very satisfying. The most reasonable motivation I’ve seen for
the creation of these notions is from group schemes and representations.

2.1 Motivation from group schemes

If G is a group scheme, and suppose for simplicity it’s affine. Then the multiplication map on G is a map
G × G → G, which is actually just the same as an F-algebra map F[G] → F[G] ⊗ F[G]. Notice that this is
not the multiplication map on F[G], as the arrow is going the wrong way! It will turn out that F[G] is
a Hopf algebra, and the comultiplication map is precisely the ring analogue of the multiplication map
G × G → G. There are many natural maps on the group scheme G which correspondingly give us the
Hopf algebra maps on F[G], we’ll summarize it in the following table.

Scheme map on G Hopf algebra map on F[G]
multiplication G × G → G comultiplication ∆ : F[G] → F[G] ⊗F F[G]

inclusion of identity SpecF → G counit ε : F[G] → F
diagonal G → G × G multiplication µ : F[G] ⊗F F[G] → F[G]

structure map G → SpecF unit η : F → F[G]
inverse G → G antipode S : F[G] → F[G]

2.2 Motivation from representation theory

The other major motivation I’ve seen (thanks to Hunter Dinkins!) is for a reasonable notion of the category
of representations. What does this mean? Well, one of fundamental constructions in representation theory
is that we can do stuff like take the tensor product of representations and the dual of representations. Any
time we have some nice algebra and want to work with its representations, we should be able to take
tensor products and take duals. (Note that representations for the most common objects, groups and Lie
algebras, are actually just representations of the corresponding algebras, the group algebra of the group
and the universal enveloping algebra of the Lie algebra.)

Example 2.2.1. Let G be a group. Then for two G-representations V, W we can take their tensor product
V ⊗F W , and we define the G-action on some element v ⊗ w ∈ V ⊗ W as g(v ⊗ w) = gv ⊗ gw. Similarly,
to a representation V , we can take the dual space V ∨ and give it a G-module structure, by saying that for
φ ∈ V ∨, then (gφ)(v) = φ(g−1v).

Example 2.2.2. Let g be a Lie algebra. Then for two g-modules V, W we can take their tensor product
V ⊗F W and give it a g-module structure: we have that X(v ⊗ w) = Xv ⊗ w + v ⊗ Xw. Similarly, to a
representation V , we can take the dual space V ∨ and give it a g-module structure, by saying that for
X ∈ g, φ ∈ V ∨, and v ∈ V , that (Xφ)(v) = −φ(Xv).
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Let’s say A is an algebra, and we want to consider representations of it. What information do we need
to take tensor products and duals of A-representations? Well, for A-modules V and W , then A doesn’t
canonically act on V ⊗W , but A⊗A does! Therefore a comultiplication map ∆ : A → A⊗A allows us
to give the tensor product an A-module structure. Similarly, to give an A-module structure to the
dual space V ∨, we need some A-anti-homomorphism to “reverse” the structure of A, and that’s exactly
where the antipode comes in: for φ ∈ V ∨, v ∈ V , and a ∈ A, we just set (a · φ)(v) := φ(S(a) · v).
Thus to really get a nice category of representations, A should actually be a Hopf algebra!

Remark 2.2.3. If we want double dual to be identity - for example, in the category of finite-dimensional
G-modules for a group G, or BGG Category O - we’d need S2 = id. There are several results which
give sufficient conditions for this to be true; for example, the Larson-Radford theorem says that for a
finite-dimensional Hopf algebra H over a field of characteristic 0, then S2 = id iff H is semisimple iff H∨ is
semisimple iff tr(S2) ̸= 0. Another example is that if H is commutative or cocommutative, then S2 = id.
Generally speaking, however, S2 doesn’t have to be the identity.

5


	Introduction
	Purpose of this note
	Layout
	The definition
	Algebra structure
	Coalgebra structure
	Antipode
	Examples

	Motivation
	Motivation from group schemes
	Motivation from representation theory


