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1 Introduction

1.1 Overview
These notes are for my pre-talk for the Harvard-MIT Algebraic Geometry seminar on April 2, 2024, expanded to
include more interesting details and examples for completeness. The goal of these notes is to introduce the reader to
the objects known as Springer fibers, and discuss some of their representation-theoretic properties. Springer fibers
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are extremely interesting objects because they encode the representation theory of the Weyl group geometrically.
Weyl groups themselves are very interesting due to their fundamental importance in Lie theory, which is rooted
in geometry. Therefore, one might naively hope that Weyl groups might stand out from typical finite groups by
having their representations appear geometrically as well. This turns out to be true - it’s known as the Springer
correspondence - and is the springboard to geometric representation theory.

1.2 More details
These notes are very heavily based on [CG97, §3]; I strongly recommend you to read this chapter for more details.
It’s an absolutely wonderful book and paints a beautiful picture of Springer fibers and their place in representation
theory. Another nice article which gives an overview of Springer fibers (and more) is [Yun16], and I referenced this
often for concrete examples. In these notes, I don’t aim to give complete details, nor full proofs; instead, I’ll try to
emphasize the most important ideas. It goes without saying that none of this is original.

1.3 Useful background
The main background the reader should have is being comfortable with the basic notion of Lie algebras, especially
structure theory of semisimple Lie algebras, Cartan subalgebras, and Borel subalgebras. In a pinch, however, un-
derstanding just GL𝑛 and SL𝑛 should be sufficient. Basic algebraic geometry is useful to understand the maps we
describe: often I’ll write them set-theoretically for ease of understanding, but they are always maps of algebraic
varieties. Basic algebraic topology is also useful, mainly to understand the basic uses of Borel-Moore homology and
singular cohomology.

1.4 Setup and notation
We’ll mainly work over the field C. Let 𝔤 be a simple Lie algebra, therefore classified by some Dynkin diagram. Let
G be a connected Lie group with Lie algebra 𝔤. There are many such choices of a Lie group, but every such group is a
quotient of unique connected, simply-connected Lie group by a finite subgroup of the center. In our case the action
of G on 𝔤 is always the adjoint action; since the action always factors through the center, every choice of a Lie group
G gives us the same adjoint action on 𝔤.

At times, it’s useful to fix a Cartan 𝔤 ⊂ 𝔤, corresponding to a maximal torus T ⊂ G, and a Borel subalgebra 𝔟 ⊂ 𝔤,
corresponding to a Borel subgroup B ⊂ G.

2 Preliminaries

Here is a quick summary of important preliminaries that we will use. For a more thorough treatment, see [CG97],
especially the end of §2 and the beginning of §3. We adopt the setup and notation from §1.4.

2.1 Semisimple and regular elements
Recall that 𝔤 is a semisimple Lie algebra. Let 𝑍𝔤 (𝑥) denote the centralizer in 𝔤 of 𝑥 . It’s known that for any 𝑥 ∈ 𝔤,
there’s the lower bound dim𝑍𝔤 (𝑥) ≥ rk𝔤 = dim 𝔥.

Definition 2.1 (regular): An element 𝑥 ∈ 𝔤 is regular of dim𝑍𝔤 (𝑥) = rk𝔤.

Remark 2.2: There’s two ways to “centralize” 𝑥 ∈ 𝔤 (or more generally, any set): there’s the stabilizer subgroup
in G acting by adjoint (conjugation), denoted by G𝑥 , and there’s the Lie subalgebra 𝑍𝔤 (𝑥) of elements whose
adjoint action kills 𝑥 . It’s not hard to see that 𝑍𝔤 (𝑥) is the Lie algebra of G𝑥 .

Definition 2.3 (semisimple): An element 𝑥 ∈ 𝔤 is semisimple if ad𝑥 is diagonalizable.

We can think of semisimple as belonging to a Cartan subalgebra (this is literally true). Elements which are both
semisimple and regular form a 𝐺-stable open dense subset of 𝔤; their complement is the closed subvariety cut out
by a single polynomial.
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2.2 Abstract Cartan and abstract Weyl group
For a choice of maximal torus T ⊂ G, we can realize the Weyl group explicitly as 𝑁G (T)/T. However, this requires
us to choose a maximal torus. These are useful in practice, but we need an abstract way to realize the Weyl group so
that we are not forced to make a choice at every step and keep track of all of these choices.

Recall that 𝔤 is constructed abstractly from a (semisimple) root system R in a complex vector space 𝔉. This means
that R is a finite subset of𝔉∗, the dual space of𝔉, and for each root 𝛼 ∈ R we are given an element 𝛼∨ ∈ 𝔉, called the
coroots. The data then needs to satisfy some conditions. Now for 𝛼 ∈ R, we have an associated reflection 𝑠𝛼 : 𝔉 → 𝔉

given by 𝑠𝛼 (𝑥) = 𝑥 − ⟨𝑥, 𝛼∨⟩ · 𝛼 .

Definition 2.4 (abstract Weyl group): The abstract Weyl group W is the (finite) group generated by the
reflections 𝑠𝛼 .

Fix once and for all a base of R, i.e., a set of simple roots 𝑆 ⊂ R. Then W is generated by {𝑠𝛼 | 𝑠 ∈ 𝑆}, the simple
reflections. (Concretely,W is a Coxeter group, so each 𝑠𝛼 has order two and the braiding relations are given by the
angles between the simple roots.)

To relateW to each𝑊T is akin to “choosing an orientation” on G. If G were the sphere 𝑆2, then I think of choosing T
as choosing some great circle as the equator, and choosing B is choosing which hemisphere is the northern one. In
W, the simple roots 𝑆 ⊂ R already choose the “northern hemisphere” for us.

To construct this identification is slightly delicate, so I’ll spell it out slowly (with emphasis on especially important
words).

Lemma 2.5: Any two quotients 𝔟/[𝔟, 𝔟], 𝔟′/[𝔟′, 𝔟′] are canonically isomorphic.

Proof. Any two Borel subalgebras are G-conjugate, so we always have an isomorphism 𝔟 ∼−→ 𝔟′ given by 𝔟′ =

𝑔𝔟𝑔−1. But we have a whole coset 𝑔B to give us these maps. The key is that when we pass to the quotient,
each element of the coset 𝑔B induces exactly the same map 𝔟/[𝔟, 𝔟] ∼−→ 𝔟′/[𝔟′, 𝔟′], thus making the isomorphism
canonical. □

So now we identify all quotients 𝔟/[𝔟, 𝔟] (running over all Borel subalgebras 𝔟) and call this vector space the
“abstract Cartan” ℌ. Note that this is not a subalgebra of 𝔤, which is why it is called “abstract”!

In order for this to make sense, we need to relate this “abstract Cartan” ℌ with some concrete Cartan 𝔥 ⊂ 𝔤, so that
we can turn this abstract Cartan into an abstract construction of 𝔤 through root data which also agrees with the
many concrete constructions (through picking some concrete 𝔥). Currently, ℌ is merely some very special abstract
vector space, and we need to specify abstract roots and choose a subset to be the simple abstract roots, then check
its compatibility with all of the concrete constructions.

The idea is that every choice of 𝔥 ⊂ 𝔤 gives us a root system, and every choice of 𝔟 ⊃ 𝔥 gives us a specification of
simple roots, thus giving us all of the data of ℌ,R, 𝑆,W, and they all end up giving compatible identifications. (For
this reason, we can view choosing 𝔥 as the “plane” on which we live on, for example the choice of equator in 𝑆2, and
choosing 𝔟 as the choice of northern hemisphere.)

First, any choice of Cartan 𝔥 ⊂ 𝔤 immediately gives us the data of a root system: the vector space is 𝔥∗, and the
roots R𝔤,𝔥 ⊂ 𝔥∗ are exactly the weights of the adjoint 𝔥-action on 𝔤. (The coroots can be defined using the Killing
form.) This root system is not complete, however: it lacks a choice of simple roots. To get that, we need to choose
a Borel subalgebra 𝔟 ⊃ 𝔥; the positive roots are exactly the weights of the adjoint 𝔥-action on 𝔟. This gives us all of
the data we need: we have the vector space 𝔥∗, the root system R𝔤,𝔥, and a choice of simple roots 𝑆𝔟; indeed, this is
the classical construction.

Remark 2.6: To reiterate the point: a choice of maximal torus T ⊂ G is enough to define the Weyl group𝑊T;
however, in order to have a specified set of simple reflections as the generators, we need to choose a Borel B.
So if we don’t care about the “orientation” of𝑊T and only care about it as a group, then we can just write𝑊T
and ignore the choice of B.
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The first step is to compare the Cartans. The chain of maps 𝔥 ↩→ 𝔟 ↠ 𝔟/[𝔟, 𝔟] gives us an isomorphism 𝔥 ∼−→ℌ,
which induces an isomorphism 𝔥∗ ∼−→ℌ∗. Thus, we can define the roots R of ℌ to be the image of R𝔤,𝔥 under
this identification. Next, the choice of Borel 𝔟 ⊃ 𝔥 gives us a choice of simple roots 𝑆𝔟 ⊂ R𝔤,𝔥, and therefore the
isomorphism 𝔥 ∼−→ℌ gives us a choice of simple roots 𝑆 ⊂ R. Lemma 2.2 tells us that any choice of Borel subalgebra
containing this fixed 𝔥 would induce the exact same isomorphisms 𝔥 ∼−→ℌ and roots R𝔤,𝔥

∼−→R, and furthermore
also specify the same exact simple roots in ℌ∗.

Finally, we need to say how the Weyl groups get related. A choice of 𝔥, equivalently T, gives us a root system,
which is enough to define the Weyl group 𝑊T B 𝑁G (T)/T. The choice of 𝔥 also gives us an isomorphism 𝔥 ∼−→ℌ,
which does not depend on any Borel subalgebra; this induces an isomorphism𝑊T

∼−→W. However,W is equipped
with more structure than simply an abstract group: it has a specified set of generators, the simple reflections. The
choice of 𝔟 ⊃ 𝔥 gives the simple generators of𝑊T, and since the isomorphism R𝔤,𝔥

∼−→R induced by (𝔥, 𝔟) takes the
simple roots 𝑆𝔟 to the simple roots 𝑆 , the isomorphism𝑊T

∼−→W must also take the simple reflections to the simple
reflections.

So we’ve shown that the abstract Cartan ℌ = 𝔟/[𝔟, 𝔟], along with the abstract root system R, choice of simple
reflections 𝑆 , and abstract Weyl group W can all be related to a concrete set 𝑊T and choice of simple generators
arising from the pair (𝔥, 𝔟). It only remains to understand how the isomorphisms𝑊T

∼−→W are compatible as (𝔥, 𝔟)
vary. The answer is essentially that as pairs (𝔥, 𝔟) vary via G-conjugation, the 𝑊T also changes by conjugation.
Explicitly, for a pair 𝔥 ⊂ 𝔟, put𝑊T,B for the concrete Weyl group 𝑁G (T)/T with specified simple reflections. We have
the isomorphism 𝜙𝔥,𝔟 : 𝑊T,B

∼−→W constructed as above (here we view W as the abstract Weyl group equipped
with the data of simple reflections as generators). Then for another pair (𝑔𝔥𝑔−1, 𝑔𝔟𝑔−1), we have another concrete
Weyl group 𝑊𝑔T𝑔−1,𝑔B𝑔−1 = 𝑁G (𝑔T𝑔−1)/𝑔T𝑔−1, again with specified simple reflections, along with an isomorphism
𝜙𝑔𝔥𝑔−1,𝑔𝔟𝑔−1 : 𝑊𝑔T𝑔−1,𝑔B𝑔−1

∼−→W. Then we have a commutative diagram

𝑊T,B

W

𝑊𝑔T𝑔−1,𝑔B𝑔−1

∼

∼
Ad(𝑔) ∼

𝜙
𝑔𝔥𝑔−1,𝑔𝔟𝑔−1

𝜙𝔥,𝔟

summarizing the compatibilities. In other words, choosing T and B is choosing an orientation for which you
want to view G through, and the Weyl group moves accordingly and compatibly.

2.3 Flag variety

Definition 2.7 (flag variety): The flag variety of 𝔤 is the closed subvariety of the Grassmannian of dim 𝔟-
dimensional subspaces in 𝔤 formed by all solvable Lie subalgebras.

This is not a very clear definition, so let me give the much more common perspectives:

a) it’s the moduli space (i.e., set) of all Borel subalgebras in 𝔤;

b) it’s the moduli space (i.e., set) of all Borel subgroups in G;

c) it’s isomorphic to G/B.

The first two are obviously equivalent; they’re equivalent to the third by understanding that any Borel subalgebra
is obtained from another by conjugation by G, and the stabilizer is precisely the corresponding Borel subgroup B.
Explicitly, fixing a pair of corresponding Borels 𝔟 ↔ B, the isomorphism G/B ∼−→B is realized by𝑔 ↦→ 𝑔𝔟𝑔−1.

The flag variety is a G-homogeneous projective variety, with G acting on Borels by conjugation, or equivalently, on
G/B by left multiplication.

When 𝔤 = 𝔰𝔩𝑛 , the flag variety has another interpretation. Each Borel subalgebra is uniquely associated to a full
flag of C𝑛 , which is a sequence of subspaces 0 = 𝑉0 ⊊ 𝑉1 ⊊ 𝑉2 ⊊ · · · ⊊ 𝑉𝑛 = C𝑛 , where dim𝑉𝑖 = 𝑖 . For example,
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the Borel subalgebra corresponding to upper triangular matrices has the natural full flag given by the addition of the
coordinate vectors, one at a time: 0 ⊊ ⟨𝑒1⟩ ⊊ ⟨𝑒1, 𝑒2⟩ ⊊ · · · ⊊ 𝑒1, 𝑒2, . . . , 𝑒𝑛⟩. Therefore we can view the flag variety
of 𝔰𝔩𝑛 as the moduli space of full flags of C𝑛 .

2.4 Bruhat decomposition
Fix some Borel B ⊂ G corresponding to 𝔟 ⊂ 𝔤, along with a maximal torus T ⊂ B. We can concretely realize the
Weyl group with the alignment (T,B) by𝑊T B 𝑁G (T)/T. The punchline is that

Theorem 2.8 (Bruhat decomposition): The double cosets (given by left and right multiplication) B\G/B are
in bijection with𝑊T.

As an immediate corollary,𝑊T is in bijection with B-orbits on the flag variety B, identifying B ≃ G/B. Finally, we
have a bijection

{B-orbits onB} ↔ {G-diagonal orbits onB × B}, B · 𝔟′ ↦→ G · (𝔟, 𝔟′).

Note that this last one doesn’t depend on T,B. Therefore, we have a parametrization of diagonal G-orbits in B ×B by
W. Denote the orbits by 𝑌𝑤 for 𝑤 ∈ W. These will appear in §4.6.

2.5 The nilpotent cone

Definition 2.9 (nilpotent element): A nilpotent element is an element of 𝔤 which acts nilpotently on every
finite-dimensional 𝔤-module.

There are several other equivalent characterizations of it (for example, see [CG97, §3]), but one simple way to think
about it is to embed 𝔤 ↩→ 𝔤𝔩𝑛 , and then the nilpotent elements are literally the elements which matrices (in 𝔤𝔩𝑛) are
nilpotent.

Definition 2.10 (nilpotent cone): The nilpotent cone N is the cone subvariety of all nilpotent elements in
𝔤.

The nilpotent cone is singular at exactly one point: the origin 0 ∈ 𝔤.

Example 2.11 (N(𝔰𝔩2)): Let 𝔤 = 𝔰𝔩2 =

{(
𝑎 𝑏

𝑐 −𝑎

)
| 𝑎, 𝑏, 𝑐 ∈ C

}
. An element is nilpotent iff it has determinant 0.

Therefore we have the explicit description

N =

{(
𝑎 𝑏

𝑐 −𝑎

)
| −𝑎2 − 𝑏𝑐 = 0

}
,

so N is a quadratic cone in C3.

2.6 Borel-Moore homology
Borel-Moore homology is another type of homology theory for “reasonable” spaces. For example, every algebraic
variety over C or R satisfies this. The Borel-Moore homology of𝑋 is denoted by𝐻𝐵𝑀

• (𝑋 ). For a much more thorough
summary, see [CG97, §2.6]; here, I’ll very briefly summarize the important facts.

Borel-Moore homology still has many of the important properties that we’re familiar with from usual algebraic
topology: proper pushforwards, long exact sequences, intersection pairings, Poincaré duality, Künneth formula,
restriction with supports, smooth pullback, projection formula, even specialization.

One of the key selling points of Borel-Moore homology is the existence of a fundamental class. In singular homology,
a smooth oriented manifold 𝑋 has a fundamental class iff 𝑋 is compact. But in Borel-Moore homology, there is
always a fundamental class in the top Borel-Moore homology group. In fact, every irreducible component of 𝑋 has
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a fundamental class, and the top Borel-Moore homology group has a basis given by the fundamental classes of the
top-dimensional irreducible components of 𝑋 .

2.7 Convolution
The most important part of Borel-Moore homology (for our purposes) is convolution. (See [CG97, §2.7] for more
details.) Let 𝑀1, 𝑀2, 𝑀3 be connected oriented smooth manifolds, and take 𝑍1,2 ⊂ 𝑀1 ×𝑀2 and 𝑍2,3 ⊂ 𝑀2 ×𝑀3 to be
closed subsets. Define the “composition”

𝑍1,2 ◦ 𝑍2,3 B {(𝑚1,𝑚3) ∈ 𝑀1 ×𝑀3 | ∃𝑚2 ∈ 𝑀2 such that (𝑚1,𝑚2) ∈ 𝑍1,2, (𝑚2,𝑚3) ∈ 𝑍2,3.}

The way to think about this is to think of 𝑍𝑖, 𝑗 as “multi-valued maps from 𝑀𝑖 to 𝑀 𝑗 ,” and think of composition as
composition of these “multi-valued maps.” As an example, if 𝑓 : 𝑀1 → 𝑀2 and 𝑔 : 𝑀2 → 𝑀3 were smooth maps,
then Graph(𝑓 ) ◦ Graph(𝑔) = Graph(𝑔 ◦ 𝑓 ).

Let 𝑝𝑖, 𝑗 : 𝑀1 ×𝑀2 ×𝑀3 → 𝑀𝑖 ×𝑀 𝑗 be the projection map. We assume that

𝑝1,3 : 𝑝−1
1,2 (𝑍1,2) ∩ 𝑝−1

2,3 (𝑍2,3) → 𝑀1 ×𝑀3 is proper.

Definition 2.12 (convolution): Let 𝑑 B dimR𝑀2. The convolution map

𝐻𝐵𝑀
𝑖 (𝑍1,2) × 𝐻𝐵𝑀

𝑗 (𝑍2,3) → 𝐻𝐵𝑀
𝑖+𝑗−𝑑 (𝑍1,2 ◦ 𝑍2,3), (𝑐1,2, 𝑐2,3) ↦→ 𝑐1,2 ★ 𝑐2,3,

is defined by
𝑐1,2 ★ 𝑐2,3 = (𝑝1,3)∗

(
(𝑐1,2 ⊠ [𝑀3]) ∩ [𝑀1] ⊠ 𝑐2,3)

)
.

To summarize, whenever we have varieties 𝑋,𝑌, 𝑍 satisfying 𝑋 ◦ 𝑌 = 𝑍 , then we get an induced map in
Borel-Moore homology 𝐻𝐵𝑀

• (𝑋 ) ⊗ 𝐻𝐵𝑀
• (𝑌 ) → 𝐻𝐵𝑀

• (𝑍 ).

An easy, but important, consequence is that when 𝑋 ◦ 𝑋 = 𝑋 , then the convolution map turns 𝐻𝐵𝑀
• (𝑋 ) into an

associative algebra. For example, this happens when we have a proper map 𝜋 : 𝑀 → 𝑁 for 𝑀 a smooth complex
manifold, and 𝑋 = 𝑀 ×𝑁 𝑀 . The unit in 𝐻𝐵𝑀

• (𝑋 ) is given by the fundamental class of the diagonal 𝑀Δ ⊂ 𝑋 .

3 Extremely succinct summary

In case you don’t want to read the rest of the note, I’ll summarize the notes here, extremely succinctly.

3.1 The basic objects

Definition 3.1 (Springer resolution): Let 𝔤̃ B {(𝑥, 𝔟) ∈ 𝔤 × B | 𝑥 ∈ 𝔟}. Define the map 𝜇 : 𝔤̃ → 𝔤 by
(𝑥, 𝔟) ↦→ 𝑥 .
Define Ñ B 𝜇−1 (N) = {(𝑛, 𝔟) ∈ N × B | 𝑛 ∈ 𝔟} to be the part lying over the nilpotent cone. The Springer
resolution is the restriction of the map 𝜇 to Ñ :

𝜇 : Ñ → N , (𝑛, 𝔟) ↦→ 𝑛,

and as the name suggests, it is a resolution of singularities.

Definition 3.2: To 𝑥 ∈ 𝔤, define B𝑥 B 𝜇−1 (𝑥) to be the Springer fiber at 𝑥 ∈ 𝔤. We regard it as a subset of B.

Springer fibers are our main object of interest in these notes. We also need to know:

Definition 3.3 (Steinberg variety): The Steinberg variety is defined to be

𝑍 B Ñ ×N Ñ = {(𝑥, 𝔟, 𝔟′) ∈ N × B × B | 𝑥 ∈ 𝔟 ∩ 𝔟′ ∩ N}.
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3.2 Geometric properties
First, an observation: as varieties up to isomorphism, Springer fibers depend only on the G-orbit that they live
in.

It turns out that Springer fibers are connected and pure-dimensional.

The Steinberg variety is also connected and pure-dimensional, of dimension 2 dimB. Furthermore, its irreducible
components are indexed by 𝑤 ∈ W, so its top Borel-Moore homology is a |W|-dimensional vector space.

3.3 Representation theory
The main theorem converting algebra into geometry is that the top Borel-Moore homology group of 𝑍 , denoted by
𝐻 (𝑍 ), is an associative algebra under convolution, isomorphic to the group algebra ofW. Furthermore, the top Borel-
Moore homology groups of the Springer fibers, denoted by 𝐻 (B𝑥 ), naturally carry an action of a left (and right, but
we won’t need it here) 𝐻 (𝑍 )-module, hence is aW-representation. Noting that the stabilizer group G𝑥 acts on B𝑥 ,
we also have an action by G𝑥 on 𝐻 (B𝑥 ) factoring through the component group 𝜋0 (G𝑥 ), and this action commutes
with the 𝐻 (𝑍 )-action. Since 𝜋0 (G𝑥 ) is a finite group, we can decompose 𝐻 (B𝑥 ) with respect to its 𝜋0 (G𝑥 )-module
structure (as direct sum of irreducible representations tensored with multiplicity spaces), and the multiplicity spaces
will end up being the irreducible W-representations. This turns out to completely enumerate all of the irreducible
W-representations, and so we have a very explicit geometric construction of irreducibleW-representations: this is
called the Springer correspondence (5.2).

4 The geometry of Springer fibers

4.1 Grothendieck simultaneous resolution

Definition 4.1: Define the incidence variety 𝔤̃ B {(𝑥, 𝔟) ∈ 𝔤 × B | 𝑥 ∈ 𝔟}.

We can use standard incidence variety procedures to understand this variety. First we have the canonical projections
𝜇 and 𝜋 to 𝔤 and B, respectively:

𝔤̃

𝔤 B .

𝜇 𝜋

We are actually more interested in the (fibers of the) map 𝜇, but the map 𝜋 is easier to understand: for every 𝔟 ∈ B,
it’s clear that 𝜋−1 (𝔟) is just the elements of 𝔟. It follows that 𝜋 makes 𝔤̃ a vector bundle over B whose fibers are
Borel subalgebras. But there is more going on than that: both 𝔤 and B have an action of G given by conjugation (i.e.,
adjoint on 𝔤 and conjugation on B), and this turns 𝔤̃ into a G-equivariant vector bundle. More precisely,

Proposition 4.2: Fix a corresponding pair of Borel subalgebra and subgroup 𝔟,B, and identify G/B ∼−→B.
There’s a G-equivariant isomorphism G ×B 𝔟 ∼−→ 𝔤̃, which identifies the projection map to G/B ∼−→ B with the
projection map 𝜋 .

The exact isomorphism is given by (𝑔, 𝑥) ↦→ (𝑔𝑥𝑔−1, 𝑔𝔟𝑔−1).

Remark 4.3: The G-equivariant bundle G×B 𝔟 is defined to be the orbit-space of the trivial bundle G× 𝔟 under
the free B-action given by 𝑏 · (𝑔, 𝑥) = (𝑔𝑏−1, 𝑏𝑥𝑏−1).

Now that we have an understanding of 𝔤̃, we can turn to the map 𝜇. First, because 𝜇 factors as 𝔤̃ ↩→ 𝔤 × B → 𝔤, and
B is a projective variety, 𝜇 is proper. The fibers of this map give us the most important object in these notes.

Definition 4.4: To 𝑥 ∈ 𝔤, define B𝑥 B 𝜇−1 (𝑥) to be the Springer fiber at 𝑥 ∈ 𝔤.
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So B𝑥 = {𝔟 ∈ B | 𝔟 ∋ 𝑥} ⊂ B. We will usually consider Springer fibers as a subvariety of the flag variety B, i.e.,
identified with its image under 𝜋 .

Remark 4.5: The most interesting Springer fibers are those over the nilpotent cone, i.e., when 𝑥 is nilpotent,
but there’s no harm in considering non-nilpotents as well.

Springer fibers change as the “type” of element we choose in 𝔤 changes. To be more precise,

Note 4.6: Springer fibers in the same G-orbits of 𝔤 are isomorphic (as varieties). This is because for 𝑥,𝑦 in the
same G-orbit, then there is some 𝑔 ∈ G with 𝑦 = 𝑔𝑥𝑔−1, and correspondingly B𝑦 = 𝑔B𝑥𝑔

−1.

Example 4.7: The extreme cases are the most special point 𝑥 = 0, and the open dense locus 𝔤𝑠𝑟 of semisimple
regular elements.

a) When 𝑥 = 0, then B0 = B. This is because every Borel subalgebra contains 0.
b) When 𝑥 ∈ 𝔤𝑠𝑟 , then there are exactly |W| many points in B𝑥 , and in fact there’s a canonical freeW-action

on B𝑥 (recall that the Borel subalgebras containing a fixed semisimple regular element are indexed byW,
by their “relative position”).
This action is compatible with the entirety of 𝔤𝑠𝑟 , so that the projection 𝜇−1 (𝔤𝑠𝑟 ) → 𝔤𝑠𝑟 is a principle
W-bundle.

Example 4.8: When G = SL𝑛 , then the flag variety B is the moduli space of full flags 0 = 𝑉0 ⊊ 𝑉1 ⊊ 𝑉2 ⊊ · · · ⊊
𝑉𝑛 = C𝑛 . Then the Springer fiber B𝑒 of a nilpotent element 𝑒 ∈ N is exactly those flags for which 𝑒 (𝑉𝑖 ) ⊂ 𝑉𝑖−1
for all 𝑖 .

The main diagram here is the following:

Proposition 4.9 (Grothendieck simultaneous resolution): We have natural maps 𝜌 : 𝔤 → 𝔤/G � ℌ/W and
𝜋 : ℌ → ℌ/W, which fit into the following commutative diagram:

𝔤̃

𝔤 ℌ

ℌ/W.

𝜇 𝜈

𝜋𝜌

The restriction of this diagram to the regular locus is Cartesian.
Furthermore, for every ℎ ∈ ℌ, the map 𝜇 : 𝜈−1 (ℎ) → 𝜌−1 (ℎ) is a resolution of singularities.

4.2 Springer resolution
In Proposition 4.1, specializing to ℎ = 0, we obtain the following:

Definition 4.10 (Springer resolution): Let Ñ B 𝜈−1 (0) = {(𝑛, 𝔟) ∈ N×B | 𝑛 ∈ 𝔟}. It’s clear that 𝜌−1 (0) = N .
The Springer resolution is the restriction of 𝜇 to Ñ :

𝜇 : Ñ → N ,

and as the name suggests, it is a resolution of singularities.
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We can understand Ñ as the pullback of 𝔤̃ along the inclusion N ↩→ 𝔤:

Ñ 𝔤̃

N 𝔤.

𝜇 𝜇

⌟

There are several more concrete ways to understand it:

Proposition 4.11: Fix a Borel subgroup B ⊂ G and a corresponding Borel subalgebra 𝔟 ⊂ 𝔤, and let 𝔫 = [𝔟, 𝔟]
be the unipotent subalgebra inside. We have

Ñ � G ×B 𝔫 = G ×B 𝔟⊥ � 𝑇 ∗B .

In fact, the map 𝜋 : Ñ → B is just the projection map 𝑇 ∗B → B.

Proof. The first isomorphism follows immediately from the fact that 𝔤̃ � G ×B 𝔟, and the fact that 𝔟 ∩N = 𝔫. The
second equality follows from using the Killing form to identify 𝔤∗ ≃ 𝔤, for which 𝔟⊥ gets identified with 𝔫. The last
equality follows from understanding the cotangent space at 𝔟 ∈ B as the annihilator of 𝔟 ⊂ 𝔤, which is 𝔟⊥. □

Corollary 4.12: Ñ is smooth.

We can also easily compute dimN :

Corollary 4.13: N is irreducible of dimension 2 · dim 𝔫.

Proof. First, since Ñ � 𝑇 ∗B ↠ N , we can upper bound the dimension by dim𝑇 ∗B = 2 dim 𝔫. Also, since N is the
fiber 𝜌−1 (0), we know that the relative dimension dimN − dim{0} ≥ dim𝔤 − dimℌ/W = 2 dim 𝔫, which gives us
the upper bound. □

4.3 Nilpotent orbits and important Springer fibers
We already saw in Example 4.1 the specific cases of Springer fibers for 𝑥 = 0 and 𝑥 a semisimple regular element.
What about other cases?

As noted in 4.1, Springer fibers depend only on the G-orbit of the element. Therefore, we need to know the G-orbits
of N .

Proposition 4.14: There are finitely many G-orbits in N .

We’ll defer the proof of this to later; for now, this immediately lets us describe an important G-orbit:

Corollary 4.15: The regular nilpotent elements N𝑟𝑒𝑔 form the unique dense open G-orbit in N .

Proof. Since there are finitely many G-orbits, there is a unique dense open orbit. It suffices to check that for
𝑥 ∈ N𝑟𝑒𝑔, that 𝐺 · 𝑥 has dimension equal to N . But we know that the dimension of the stabilizer dimG𝑥 =

dim𝑍𝔤 (𝑥) = dim 𝔥, so dimG · 𝑥 = dimG − dimG𝑥 = 2 · dim 𝔫 = dimN . □

Some more things which we know about the structure of G-orbits in N :

a) Every G-orbit in 𝔤, therefore also in N , is even-dimensional. This is because to 𝑥 ∈ 𝔤, we can modify
the Killing form 𝜅 to obtain an antisymmetric bilinear form 𝛽𝑥 (𝑦, 𝑧) B 𝜅 (𝑥, [𝑦, 𝑧]) on 𝔤; by the identity
𝜅 (𝑥, [𝑦, 𝑧]) = 𝜅 ( [𝑥,𝑦], 𝑧) and non-degeneracy of 𝜅, it follows that ker 𝛽𝑥 = 𝑍𝔤 (𝑥), hence 𝛽𝑥 induces a non-
degenerate antisymmetric bilinear form on 𝔤/𝑍𝔤 (𝑥) = LieG · 𝑥 .

b) In N , there is a unique dense open orbit and a unique closed orbit (consisting of the point 0). There are no
orbits of dimension 1 or codimension 1, as above; however, there is a unique orbit of codimension 2 called
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the subregular orbit, as well as a unique smallest orbit larger than the zero orbit (but the dimension is not
necessarily 2), called the minimal orbit.

Remark 4.16: There is quite a lot known about the combinatorics of nilpotent orbits; for example, see [CM93,
Gu17]. Let me summarize some of the results.
First, one important invariant of a nilpotent orbit is the sizes of the Jordan blocks, which in turn is a partition. In
types𝐴, 𝐵,𝐶 , the partition turns out to be a complete invariant, while in type 𝐷 , it’s nearly a complete invariant.

A) In type 𝐴𝑛 , the nilpotent orbits are in bijection with partitions of 𝑛 + 1.
B) In type 𝐵𝑛 , the nilpotent orbits are in bijection with the partitions of 2𝑛 + 1 where even parts occur with

even multiplicity.
C) In type𝐶𝑛 , the nilpotent orbits are in bijection with partitions of 2𝑛 where the odd parts occur with even

multiplicity.
D) in type 𝐷𝑛 , the nilpotent orbits are in bijection with partitions of 2𝑛 where the even parts occur with even

multiplicity, except for “very even partitions,” which are partitions consisting only of even numbersm and
each very even partition corresponds to two nilpotent orbits.

We can then say what partitions the zero, minimal, subregular, and regular orbits correspond to.
Dynkin diagram zero minimal subregular regular

𝐴𝑛 [1𝑛+1] [2, 1𝑛−1] [𝑛, 1] [𝑛 + 1]
𝐵𝑛 [12𝑛+1] [22, 12𝑛−3] [2𝑛 − 1, 12 [2𝑛 + 1]
𝐶𝑛 [𝑎2𝑛] [2, 12𝑛−2] [2𝑛 − 2, 2] [2𝑛]
𝐷𝑛 [12𝑛] [22, 12𝑛−4] [2𝑛 − 3, 3] [2𝑛 − 1, 1]

Example 4.17: To each regular nilpotent 𝑥 ∈ N𝑟𝑒𝑔, there is a unique Borel subalgebra containing 𝑥 , so that the
Springer fiber B𝑥 consists of a single point.

Corollary 4.18: The Springer resolution 𝜇 : Ñ → N is an isomorphism on the dense open orbit N𝑟𝑒𝑔, justifying
the name resolution (of singularities).

Example 4.19: Let 𝔤 = 𝔰𝔩2. The nilpotent cone N was described explicitly in Example 2.5. There are two SL2-
orbits: the closed orbit consisting of just {0}, and the open dense orbit of regular nilpotent elements, which is
everything else. The Springer fiber over 0 is all of B � SL2/B � P1, while the Springer fiber over any other
nilpotent element is a single point.

4.4 Subregular Springer fibers
Recall that the largest G-orbits in N always go as follows: there is a unique open dense orbit of regular nilpotent
elements, there is no orbit of codimension 1, and there is a unique orbit of codimension 2, called the subregular
(nilpotent) orbit.

The Springer fiber of an element in the subregular orbit, called a subregular Springer fiber, is very interest-
ing.

The McKay correspondence gives a bijection between finite subgroups of SL2 (C) up to isomorphism, and simply-
laced Dynkin diagrams (we have to associative the trivial group to the empty Dynkin graph). To a finite subgroup
𝐻 ⊂ SL2 (C), we consider the Kleinian singularity C2/𝐻 ; this has exactly one singular point, the origin. Now it’s
known that there’s a minimal resolution 𝑌 → C2/𝐻 , and this minimal resolution gives us a derived equivalence
𝐷𝑏 (Coh(𝑌 )) ≃ 𝐷𝑏 (Coh𝐻 (A2)). Furthermore, the exceptional fiber of the singular point (the origin) under this
minimal resolution is known to be a union of P1s in a very specific format - each P1 is associated to a vertex in
the Dynkin diagram associated to 𝐻 under the McKay correspondence, and the two P1s intersect (at a single point)
exactly when the corresponding vertices are connected by an edge. In other words, the exceptional fiber is the dual
graph of the Dynkin diagram!
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Example 4.20: For the Dynkin diagram 𝐴𝑛 , corresponding to a cyclic group in SL2 (C), then the exceptional
fiber consists of 𝑛 P1s in a row, and each P1 intersects only its immediate left and right neighbors. So it looks
something like:

.

The point is that the subregular Springer fibers look like the exceptional fiber of the minimal resolution
above. If 𝔤 is simply laced (i.e., ADE), then the subregular Springer fiber is a union of P1s whose dual graph is the
Dynkin diagram. When 𝔤 is not simply laced, the story is slightly different. In this case, when 𝔤 is of type 𝐵𝑛 ,𝐶𝑛 , 𝐹4,
and 𝐺2, then the subregular Springer fiber is again a union of P1s whose dual graph is the Dynkin diagram 𝐴2𝑛−1,
𝐷𝑛+1, 𝐸6, and 𝐷4, respectively.

There’s more to the story than simply coincidence: all of this plays out concretely inside the nilpotent cone. To a
subregular nilpotent 𝑒 in the subregular nilpotent orbit, we can construct a transverse slice 𝑆𝑒 (for example, using the
Slodowy slice) consisting of only regular elements except for 𝑒; this slice must necessarily be a dimension 2 surface.
It turns out that 𝑆𝑒 is a Kleinian singularity, i.e., one of the singular surfaces C2/𝐻 for 𝐻 a finite subgroup in SL2 (C),
as described above, with the unique singular point (the origin) being 𝑒 ∈ 𝑆𝑒 . Then the preimage of 𝑆𝑒 in Ñ under 𝜇
is exactly the minimal resolution, and therefore the Springer fiber B𝑒 is exactly the exceptional fiber of the minimal
resolution.

4.5 Example: Springer fibers in SL3

Actually I just want to describe the Springer fibers of nilpotent elements in SL3, so sorry if you were interested in
the other fibers. To do so, we first need to know the SL3-orbits in N , which has dimension 2 dim 𝔫 = 2 · 3 = 6. We
know that there is a unique dense open orbit of nilpotent regular elements, a unique codimension 2 orbit called the
subregular orbit, a unique closed orbit consisting just of 0, and a unique smallest orbit larger than the 0 orbit - the
minimal orbit.

By analyzing Jordan normal form, we see that there are only three nilpotent conjugacy classes:

a) the zero matrix ©­«
0 0 0
0 0 0
0 0 0

ª®¬,

b) the subregular matrix ©­«
0 1 0
0 0 0
0 0 0

ª®¬,

c) and the regular matrix ©­«
0 1 0
0 0 1
0 0 0

ª®¬.

This is because the minimal orbit is the subregular orbit; for example, in Remark 4.3, we see that the partitions
corresponding to the minimal and subregular orbits of 𝐴2 are both [2, 1], corresponding to the Jordan blocks of size
2 and 1. Similarly, the zero matrix has Jordan blocks of size 1, hence corresponds to the partition [1, 1, 1], while the
regular matrix written above is a Jordan block of size 3, hence corresponds to the partition [3].

Example 4.21 (zero orbit): This one is easy. The Springer fiber over the zero element is all of B, since every
Borel subalgebra contains 0.

11



Example 4.22 (subregular orbit): We know from §4.4 that the Springer fiber over a subregular nilpotent ele-
ment should be two P1s intersecting at a single point, i.e., forming the dual graph to the Dynkin diagram 𝐴2 of
SL3. Let’s see this concretely. Let’s take our original representative

𝑒 =
©­«
0 1 0
0 0 0
0 0 0

ª®¬ .
Write the standard coordinates to be 𝑥1, 𝑥2, 𝑥3. Then B𝑒 corresponds to flags stabilized by 𝑒 , namely 0 ⊊ 𝑉1 ⊊
𝑉2 ⊊ 𝑉3 = C3. Since 𝑒 sends 𝑥1 ↦→ 0, 𝑥2 ↦→ 𝑥1, and 𝑥3 ↦→ 0, we have ker(𝑒) = ⟨𝑥1, 𝑥3⟩ and im(𝑒) = ⟨𝑥1⟩.
So we have one family of flags 0 ⊂ 𝑉1 ⊂ ker(𝑒) ⊂ C3; this consists of all one-dimensional subspaces of
ker(𝑒) � C2, hence is P1. We have another family 0 ⊂ im(𝑒) ⊂ 𝑉2 ⊂ C3, which is all two-dimensional subspaces
of C3 containing im(𝑒) = ⟨𝑥1⟩; this is also P1. We can see that they intersect at exactly one flag, namely
0 ⊂ ⟨𝑥1⟩ ⊂ ⟨𝑥1, 𝑥3⟩ ⊂ C3. So indeed, B𝑒 consists of two P1s intersecting at exactly one point.

Example 4.23: Let 𝑒 = ©­«
0 1 0
0 0 1
0 0 0

ª®¬. We know that 𝑒 is regular nilpotent, hence by Example 4.3, there is a unique

Borel containing 𝑒 , so B𝑒 is a single point. In this case, it’s just the Borel subalgebra ©­«
∗ ∗ ∗
0 ∗ ∗
0 0 ∗

ª®¬. For an arbitrary

regular nilpotent element 𝑒′, we can obtain 𝑒′ from 𝑒 by conjugating by some 𝑀 ∈ SL3, then the unique Borel
subalgebra containing 𝑒′ is just the Borel written above but conjugated by 𝑀 .

4.6 Steinberg variety and the geometry of Springer fibers
One key tool in understanding the geometry and represenation theory of Springer fibers is the Steinberg vari-
ety.

Definition 4.24 (Steinberg variety): The Steinberg variety is defined to be

𝑍 B Ñ ×N Ñ = {(𝑥, 𝔟, 𝔟′) ∈ N × B × B | 𝑥 ∈ 𝔟 ∩ 𝔟′ ∩ N}.

Using the notation of §2.4, let 𝑌𝑤 denote the (diagonal) G-orbit in B × B corresponding to 𝑤 ∈ W. It turns out that
the geometry of 𝑍 is fairly concrete:

Proposition 4.25 (geometry of 𝑍 ): Set-theoretically, 𝑍 is a disjoint union of the conormal bundles to G-orbits
in B × B:

𝑍 =
⊔
𝑤∈W

𝑇 ∗
𝑌𝑤

(B × B) .

The conormal bundles are not closed in 𝑍 , thus cannot be irreducible components. However, the closures of the
conormal bundles are closed, and it turns out that the irreducible components of 𝑍 are exactly 𝑇 ∗

𝑌𝑤
(B × B).

There’s another way to describe the irreducible components of 𝑍 , which is by nilpotent orbits. Set O ⊂ N to denote
a nilpotent G-orbit, and take 𝑍O ⊂ 𝑍 to be preimage in 𝑍 :

𝑍O 𝑍

O N .

(𝑥,𝔟,𝔟′ ) ↦→𝑥
⌟

Proposition 4.26: For any orbit O, 𝑍O is pure dimensional of dimension 2 dim 𝔫 = 2 dimB.
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We therefore have another way to parametrize irreducible components of 𝑍 : the irreducible components of 𝑍O, as O
runs over all nilpotent orbits in N .

Now fix an orbit O and a point 𝑥 ∈ O. Let G𝑥 denote the stabilizer of 𝑥 under the adjoint action of G, and let B𝑥 be
its Springer fiber. To study 𝑍O, we need to introduce

Ñ ⊃ Õ B 𝜇−1 (O) = G ×B (O ∩ 𝔫) = G ×G𝑥 B𝑥 .

This gives Õ the structure of a G-equivariant bundle over O ≃ G/G𝑥 , by the projection map G ×G𝑥 B𝑥 → G/G𝑥 .
Therefore,

𝑍O = Õ ×O Õ = G ×G𝑥 (B𝑥 × B𝑥 ).
This description is very powerful and we immediately read off several geometric consequences:

Corollary 4.27:
a) The irreducible components of 𝑍O are G×G𝑥 (B𝛼

𝑥 ×B𝛽
𝑥 ), where B𝛼

𝑥 ,B
𝛽
𝑥 are irreducible components of B𝑥 .

b) The Springer fiber B𝑥 is pure dimensional, of dimension dimB𝑥 = dimB − 1
2 dimO.

c) By Zariski’s main theorem, B𝑥 is also connected.

Remark 4.28: We can actually explicitly enumerate the irreducible components of 𝑍O. We have an action of
G𝑥 on B𝑥 by conjugation, hence inducing an action on the set of irreducible components of B𝑥 . The connected
component of G𝑥 acts trivially on permuting the irreducible components, hence the action factors through
𝜋0 (G𝑥 ), the component group of G𝑥 ; this is a finite group. Therefore the irreducible components of 𝑍O are in
bijection with diagonal 𝜋0 (G𝑥 )-orbits on pairs of irreducible components of B𝑥 .

5 Representations of the Weyl group

Our goal is to study representations of the Weyl groupW. This is a finite group, and we’re not actually interested in
representations of finite groups - that’s a purely algebraic problem, so why are we studying this? The point is that
Weyl groups are not just any finite groups - they are finite groups deeply linked to the geometry of Lie groups, and
correspondingly, their representations can also be constructed geometrically. It turns out that we can recover all of
their representations from Springer fibers.

5.1 Steinberg variety encodes the Weyl group

Definition 5.1: To a pure-dimensional variety 𝑋 , let 𝐻 (𝑋 ) denote the top Borel-Moore homology of 𝑋 (by
default, use rational coefficients Q). It has a basis by the irreducible components of 𝑋 , and since 𝑋 ◦𝑋 = 𝑋 , we
have (𝐻𝐵𝑀

• (𝑋,Q),★) is an associative algebra under convolution, which by dimension properties descends to
an associative algebra structure on (𝐻 (𝑋 ),★).

The key fact that will allow us to turn algebra into geometry is the following:

Theorem 5.2: There’s an isomorphism of associative Q-algebras 𝐻 (𝑍,Q) � Q[W]; the multiplication on the
left side is convolution, and the multiplication on the right side is from group multiplication.

Sketch of proof. See [CG97, Theorem 3.4.1] for full details.
Broadly speaking, we consider the graph Graph(𝑤) of the element 𝑤 ∈ W as a subvariety in 𝔤̃𝑠𝑟 × 𝔤̃𝑠𝑟 . Since
convolution of graphs in Borel-Moore homology is just composition of functions, the classes of these subvarieties
act as 𝑤 ∈ Q[W].

Slightly more rigorously, for each 𝑤 ∈ W, we take our base space to be ℌ𝑤 B Graph(ℌ 𝑤−→ ℌ). We have a locally
trivially fibration

𝜈 × 𝜈 : 𝔤̃ × 𝔤̃ → ℌ ×ℌ,

where 𝜈 is from (4.1), and take 𝔤̃𝑤 B (𝜈 × 𝜈)−1 (ℌ𝑤) to be the smooth total space. Then we have a locally trivial
fibration 𝜈 × 𝜈 : 𝔤̃𝑤 → ℌ𝑤 whose special fiber at 0 ∈ ℌ𝑤 is 𝜈−1 (0) × 𝜈−1 (0) = Ñ × Ñ .
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So ideally, we define some closed subvarieties Λ𝑤 ⊂ 𝔤̃𝑤 which play the role of Graph(𝑤); the way to do this is to
define Λ𝑤 to be the preimage of the diagonal 𝔤Δ ⊂ 𝔤×𝔤 under the map 𝜇× 𝜇 : 𝔤̃𝑤 = 𝔤̃×ℌ𝑤

𝔤̃ → 𝔤×𝔤. On one hand,
restricting to the generic semisimple regular elements, we’ll find that Λ𝑟𝑒𝑔

𝑤 = Graph(𝔤̃𝑠𝑟 𝑤−→ 𝔤̃𝑠𝑟 ). On the other
extreme, specializing to the special point 0 ∈ ℌ, then Λ𝑤 ∩ (𝜈−1 (0) ×𝜈−1 (0)) ⊂ (̃𝔤×𝔤 𝔤̃) ∩ (Ñ ×Ñ) = Ñ ×N Ñ = 𝑍 .

The last step is attempting to specialize from ℌ
𝑟𝑒𝑔
𝑤 → 0. This would involve a specialization map

limℎ→0 : 𝐻 (Λ𝑟𝑒𝑔
𝑤 ,Q) → 𝐻 (𝑍,Q), and we can define [Λ0

𝑤] to be the image of the fundamental class [Λ𝑟𝑒𝑔
𝑤 ].

The [Λ𝑟𝑒𝑔
𝑤 ] convolve with each other in the same way that elements ofWmultiply, because they’re literally graphs

of theW-action. Since convolution commutes with specialization, the resulting classes [Λ0
𝑤] ∈ 𝐻 (𝑍 ) would then

satisfy the same relations: [Λ0
𝑤] ★ [Λ0

𝑦] = [Λ0
𝑤𝑦] ∈ 𝐻 (𝑍 ). I’ll mention a minor technical issue (which doesn’t

really detract from the motivation behind the proof): to define specialization, we need the projection Λ𝑤 → ℌ𝑤

to be locally trivial away from 0. This is not the case: ℌ𝑤 \ {0} ⊋ ℌ
𝑟𝑒𝑔
𝑤 , so there’s a technical step where we replace

ℌ with a smaller subset for which this is true.

Finally, we just need to know that specialization map is well-defined, i.e., independent of our “parameter” ℎ, and
that these classes span 𝐻 (𝑍,Q), thus forming a basis. This turns out to be true, thus giving us an isomorphism
Q[W] ∼−→𝐻 (𝑍,Q), sendingW ∋ 𝑤 ↦→ [Λ0

𝑤]. □

Corollary 5.3: 𝐻 (𝑍 ) is semisimple (as an algebra).

Remark 5.4: This is quite a startling fact because W does not act on Springer fibers B𝑒 as automorphisms of
varieties. Nevertheless, the 𝐻 (𝑍 )-action on 𝐻 (B𝑒 ) allows us to construct a naturalW-action on 𝐻 (B𝑒 ).

5.2 Springer correspondence
Theorem 5.1 gives us a LOT to work with. Remember that Borel-Moore homology actions come from “composition”:
for varieties 𝑋,𝑌, 𝑍 such that 𝑋 ◦𝑌 = 𝑍 , we have maps 𝐻𝐵𝑀

• (𝑋 ) ⊗𝐻𝐵𝑀
• (𝑌 ) → 𝐻𝐵𝑀

• (𝑍 ). If 𝑋 ◦𝑋 = 𝑋 , then 𝐻𝐵𝑀
• (𝑋 )

is an associative algebra, and if 𝑋 ◦ 𝑌 = 𝑌 , then 𝐻𝐵𝑀
• (𝑌 ) is an 𝐻𝐵𝑀

• (𝑋 )-module.

Our main application will be:

Corollary 5.5: For 𝑥 ∈ N , we have 𝑍 ◦ B𝑥 = B𝑥 = B𝑥 ◦ 𝑍 . This means that 𝐻 (B𝑥 ) is both a left and right
𝐻 (𝑍 )-module.

So we have one action from 𝐻 (𝑍 ); we also know that B carries a G-action, sending Springer fibers 𝑔 : B𝑥 ↦→ B𝑔𝑥𝑔−1 .
We have to know how these two actions intertwine.

Lemma 5.6: The G-action and (either left or right; pick one) 𝐻 (𝑍 )-action on 𝐻 (B𝑥 ) commute: for all 𝑔 ∈ G and
𝑧 ∈ 𝐻 (𝑍 ), we have

𝐻 (B𝑥 ) 𝐻 (B𝑔𝑥𝑔−1 )

𝐻 (B𝑥 ) 𝐻 (B𝑔𝑥𝑔−1 ).

𝑔

𝑧★−𝑧★−

𝑔

Proof. For 𝑐 ∈ 𝐻 (B𝑥 ), we want to show that 𝑧 ★ 𝑔(𝑐) = 𝑔(𝑧 ★ 𝑐). Since G ↷ 𝑍 , we have a map G → Aut(𝑍 ),
therefore we already know that 𝑔(𝑧) ★𝑔(𝑐) = 𝑔(𝑧 ★ 𝑐). But since G is assumed to be connected, it acts trivially on
any homology, in particular 𝑔 |𝐻 (𝑍 ) = id and so 𝑔(𝑧) = 𝑧, giving the result. □

Similarly, the stabilizer of 𝑥 is G𝑥 , so we get an action G𝑥 ↷ B𝑥 . The action on homology 𝐻 (B𝑋 ) factors through
the component group 𝜋0 (G𝑥 ) (due to connected groups acting trivially on homology). Therefore:

Corollary 5.7: The (left or right) 𝐻 (𝑍 )-action and 𝜋0 (G𝑥 )-action on 𝐻 (B𝑥 ) commute.
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This is what really allows us to break open 𝐻 (B𝑥 ). Let’s just consider everything as left modules for simplicity. Then
treating 𝐻 (B𝑥 ) purely as a 𝜋0 (G𝑥 )-representation for now, representation theory of finite groups tells us (note that
𝜋0 (G𝑥 ) is a finite group and 𝐻 (B𝑥 ) is finite-dimensional) that

𝐻 (B𝑥 ,C) ≃
⊕

irreps𝜓 of𝜋0 (G𝑥

𝜓 ⊗ 𝐻 (B𝑥 ,C)𝜓 ,

where 𝐻 (B𝑥 ,C)𝜓 are the multiplicity spaces. The commuting actions instantly tells us that the multiplicity spaces
are 𝐻 (𝑍 )-modules.

Remark 5.8: We use C-coefficients to guarantee semisimplicity, but it’s actually enough to use any field where
all irreps of 𝜋0 (G𝑥 ) are defined. It turns out that Q is already sufficient for everything except 𝐸8.

The main theorem tells us how much this strategy succeeds (hint: it’s very successful). Identifying 𝐻 (𝑍,C) ≃ C[W],
then 𝐻 (𝑍 )-modules are just W-representations. It turns out all irreducible W-representations are realized as
multiplicity spaces in the Borel-Moore homology of Springer fibers.

Theorem 5.9 (Springer correspondence):
a) 𝐻 (B𝑥 ,C)𝜓 is a simple 𝐻 (𝑍,C)-module for all 𝑥 ∈ N and all irreps𝜓 of 𝜋0 (G𝑥 ).
b) Two multiplicity spaces 𝐻 (B𝑥 ,C)𝜓 � 𝐻 (B𝑦)𝛾 are isomorphic as 𝐻 (𝑍,C)-modules iff (𝑥,𝜓 ) and (𝑦,𝛾) are

G-conjugate, i.e., there exists 𝑔 ∈ G such that 𝑦 = 𝑔𝑥𝑔−1, and 𝛾 gets identified with 𝜓 via G𝑦 = G𝑔𝑥𝑔−1 =

𝑔G𝑥𝑔
−1.

c) All simple 𝐻 (𝑍,C)-modules arise in this way.
In other words, {

𝐻 (B𝑥 ,C)𝜓 | G-conjugacy classes of pairs (𝑥,𝜓 )
}

forms a complete set of simple 𝐻 (𝑍,C)-modules, equivalently, irreducibleW-representations.

Example 5.10: If 𝑒 ∈ N𝑟𝑒𝑔 is a regular nilpotent element, then its Springer fiber B𝑒 is just a point. Then
𝐻 (B𝑒 ,Q) = 𝐻𝐵𝑀

0 (pt,Q) = Q. Since 𝐻 (𝑍,Q) already acts trivially on 𝐻 (B𝑒 ,Q), it must act trivially on all
multiplicity spaces (although there’s only one anyway, for the trivial 𝜋0 (G𝑒 )-representation), hence the Springer
fiber over regular nilpotent elements gives us the trivialW-representation.

For a slightly more involved example:

Example 5.11 (Representations coming from the subregular orbit): Let 𝑒 ∈ 𝔤 be a subregular nilpotent
element. Recall that the Springer fiber B𝑒 will be a union of P1s, arranged in the dual graph of a corresponding
Dynkin diagram Γ′ (not necessarily the one giving rise to 𝔤). Then B𝑒 is one-dimensional as a complex algebraic
variety, hence its top Borel-Moore homology is 𝐻 (B𝑒 ) = 𝐻𝐵𝑀

2 (B𝑒 ) = 𝐻 2 (B𝑒 ), and we can identify the P1s
with the vertices of the Dynkin diagram Γ′. Then the action of 𝜋0 (G𝑒 ) ≃ Aut(Γ′), and the action of 𝜋0 (G𝑒 ) on
𝐻 (B𝑒 ) is exactly the action of Aut(Γ′) permuting the vertices of Γ′.

Taking the trivial representation 𝜓 of 𝜋0 (G𝑒 ), the corresponding multiplicity space in 𝐻 (B𝑒 ) is exactly the
𝜋0 (G𝑒 )-invariants: 𝐻 (B𝑒 )𝜓 = 𝐻 (B𝑒 )𝜋0 (G𝑒 ) . Now essentially by how the Dynkin diagram Γ′ is constructed from
𝔤, it turns out that the Aut(Γ′)-invariants of the vector space with basis given by vertices of Γ′ has dimension
equal to the rank of 𝔤. In fact, theW-module structure on𝐻 (B𝑒 )𝜋0 (G𝑒 ) is exactly the reflection representation of
W on ℌ∗. Thus under the Springer correspondence, the pair of subregular nilpotent and trivial representation
(𝑒,𝜓 ) corresponds to the reflection representation ofW.
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Example 5.12 (zero orbit):The Springer fiber over 0 is all of B, so we have an action ofW on𝐻𝐵𝑀
• (B) = 𝐻 • (B)

(recall that B is smooth and compact, so Borel-Moore homology is just singular cohomology). What W-
representation does this correspond to under the Springer correspondence? We have an abstract action of W
on 𝐻𝐵𝑀

• (B) via convolution from 𝐻 (𝑍 ), but let’s see it more concretely. (Note that this time we are looking at
the entire homology space, not just the top one.)

First, it’s important to note that there is no natural action ofW on B. But there’s a relatively straightforward
way to construct an action of some manifestation of the Weyl group 𝑊T, by choosing T ⊂ G and realizing
𝑊T = 𝑁G (T)/T. Note that G/T is an affine space bundle over G/B � B, so their singular cohomologies and
Borel-Moore homologies match. But G/T is easier to work with because𝑊T = 𝑁G (T)/T naturally acts on G/T
on the right, hence we get an induced action of𝑊T ↷ 𝐻 • (G/𝑇 ) = 𝐻 • (B).

To ensure it extends to a well-defined action of W, we need to know that every choice of (T,B) gives
compatible actions. In other words, any two pairs are G-conjugate by some 𝑔 ∈ G, and the corresponding
manifestations of their Weyl groups𝑊T are also conjugate by the same exact 𝑔; furthermore, the isomorphisms
G/B′ ≃ B ≃ G/B′′ are conjugate again by the same 𝑔 ∈ G. So all of these actions are compatible, allowing us
to have a well-defined action of abstractW on 𝐻𝐵𝑀

• (B).

The main result is that these two W-actions on 𝐻𝐵𝑀
• (B) coincide, and furthermore, 𝐻𝐵𝑀

• (B) is the regular
representation ofW. If we restrict to the top space 𝐻 (B) ⊂ 𝐻𝐵𝑀

• (B), then it’s the sign representation ofW.

Remark 5.13: Let me point out that in certain sources, such as [Yun16], the Springer correspondence is done
using singular cohomology of the Springer fibers, 𝐻 • (B𝑒 ). This is not actually that different from our presen-
tation: since B𝑒 is compact (𝜇 is a proper map, hence fibers are compact), Borel-Moore homology agrees with
singular homology, so 𝐻𝐵𝑀

• (B𝑒 ) = 𝐻• (B𝑒 ). On the other hand, the universal coefficients theorem implies that
(over a field) singular cohomology is the dual space of singular homology, so as a W-module, 𝐻 • (B𝑒 ) is the
dual representation of 𝐻• (B𝑒 ) = 𝐻𝐵𝑀

• (B𝑒 ), and the top singular cohomology group is the dual representation
of the top Borel-Moore homology group. SinceW is a finite group, the dual of a finite-dimensional irreducible
representation is again irreducible, so the Springer correspondence using singular cohomology will just be the
dual of our version.

5.3 Example: 𝔰𝔩𝑛
Let’s look at the case 𝔰𝔩𝑛 concretely. The advantage here is that we can make all 𝜋0 (G𝑥 ) trivial, so that 𝐻 (B𝑥 )
themselves are exactly theW = 𝑆𝑛-irreps.

First, a word for how to trivialize the component groups. All constructions that we did - for example, flag variety,
Springer fibers, etc. - relied only on the semisimple Lie algebra 𝔰𝔩𝑛 . But all of these constructions are the same when
we take a reductive 𝔤 whose semisimple component [𝔤, 𝔤] = 𝔰𝔩𝑛 . So we replace 𝔰𝔩𝑛 with 𝔤𝔩𝑛 , and SL𝑛 with GL𝑛 .
We have the same nilpotent cone, nilpotent conjugacy classes, flag variety, and Springer fibers. The advantage is
that:

Lemma 5.14: For all 𝑥 ∈ 𝔤𝔩𝑛 , we have that 𝜋0 ((GL𝑛)𝑥 ) = 1.

Proof. The proof is basically by blindly identifying a bunch of stuff. First, the stabilizer group of 𝑥 is

(GL𝑛)𝑥 = {𝑦 ∈ GL𝑛 | 𝑥𝑦 = 𝑦𝑥} ⊂ {𝑦 ∈ Mat𝑛 = 𝔤𝔩𝑛 | 𝑥𝑦 = 𝑦𝑥} = C𝑟 ,

the latter of which is a vector space. Inside this vector space, (GL𝑛)𝑥 is the complement of a (complex) codimension
1 hypersurface (namely, the hypersurface cut out by the determinant). But this is real codimension 2, hence
𝜋0 ((GL𝑛)𝑥 ) = 1. □
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Remark 5.15: It’s not true that 𝜋0 ((SL𝑛)𝑥 ) = 1 for every 𝑥 ∈ 𝔰𝔩𝑛 . So upgrading from semisimple to reductive
increased our Lie group enough to ensure that the stabilizer groups are connected, thus allowing us to say that
the multiplicity spaces are the same as the entirety of 𝐻 (B𝑥 ).

What are the implications? Well, this lemma allows us to say that the multiplicity spaces are the same as the entirety
of 𝐻 (B𝑥 ), since the component groups are now trivial, and the only irreducible representation of the trivial group
is trivial. In other words,

𝐻 (B𝑥 ,Q) = Q ⊗Q 𝐻 (B𝑥 ,Q)trivial = 𝐻 (B𝑥 ,Q)trivial.

Therefore, the Springer correspondence (5.2) becomes:

Theorem 5.16 (Springer correspondence for 𝔰𝔩𝑛):
a) 𝐻 (B𝑥 ) is a simple 𝐻 (𝑍 ) = Q[𝑆𝑛]-module for all 𝑥 ∈ N .
b) 𝐻 (B𝑥 ) � 𝐻 (B𝑦) as 𝐻 (𝑍 ) = Q[𝑆𝑛]-modules iff 𝑥,𝑦 are SL𝑛-conjugate, i.e., lie in the same nilpotent orbit.
c) All simple 𝐻 (𝑍 ) ≃ Q[𝑆𝑛]-modules arise in this way.

As a result, we have a bijection:

{irreducible 𝑆𝑛-representations} {SL𝑛-orbits inN} {conjugacy classes of𝑛 × 𝑛 nilpotent matrices}

{partitions of𝑛}

Young tableux Jordan blocks

Springer fibers

Example 5.17: Let 𝔤 = 𝔰𝔩3. Let’s see what the Springer correspondence says concretely. There are three
partitions of 3, namely [3], [2, 1], and [13], corresponding to the three nilpotent orbits: regular, subregular, and
zero orbit.

a) The regular orbit corresponds to the partition [3], and corresponds to the trivial 𝑆3-represenation.
b) The subregular orbit corresponds to the partition [2, 1], and corresponds to the standard (two-

dimensional) representation of 𝑆3.
c) The zero orbit corresponds to the partition [13], and corresponds to the sign representation of 𝑆3.

5.4 And beyond
These methods of studying representations from geometric origins are extremely fruitful. As one example, we
can even construct all representations of 𝔰𝔩𝑛 in a similar manner, using partial flag varieties instead: see [CG97,
§4].
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