18.747 Fall 2023

Infinite-dimensional Lie algebras

Merrick Cai

The professor for this course is Leonid Rybnikov. As always, all errors are my fault; please send
me any that you find!
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Our goal in this course is to study most important infinite dimensional Lie algebras and their
representations.

In the finite dim case, semisimple Lie algebras constitute the nicest and most important
examples. This is done by highest weight representations, category O, etc.

We are interested in infinite dimensional Lie algebras that behave similar to semisimple finite-
dim Lie algebras, exhibiting such behavior as highest weight, etc.

We are mostly interested in:

affine Kac-Moody Lie algebras
Virasoro algebra
Heisenberg algebra

etc.
Our main references will be:

Kac-Raina, Bombay Lectures on Highest Weight Representations of Infinite DImensional

Lie Algebras
Darij Grinberg's notes from 2012, taught by Pavel Etingof

Victor Kac, Infinite dimensional Lie algebras

the first chapter of D. B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras

Cohomology of Lie algebras

Let g be a Lie algebra, M be a g-module.
In general, we work over C.


https://books.google.com/books/about/Bombay_Lectures_on_Highest_Weight_Repres.html?id=0P23OB84eqUC
https://www.cip.ifi.lmu.de/~grinberg/algebra/etingof-lie.pdf
https://link.springer.com/book/10.1007/978-1-4757-1382-4
https://link.springer.com/book/10.1007/978-1-4684-8765-7

/ Definition 1.

We define H*(g, M) := Extj,) (1, M) as a graded vector space, where 1 is the trivial g-module.

:= Example 2.

Let g be an abelian Lie algebra, g = C. How do we compute H*? We do this by taking projective
resolution of 1 and taking Hom with M.
So we start with 0 <— 1, then need a surjection from a free U(g)-module. Let’s take Sg, the

symmetric algebra. We end up with an exact sequence
0+ 1+ Sg« Sg®g+ Sg@A?g+ Sg@A>g+ -,

this is called the Koszul complex. Now we must apply Hom(—, M) to this sequence. But
Homy () (Sg ® A*g, M) =~ M ® A*g* =~ Homc(A g, M).

So we get a complex

0 — M — Hom¢(g, M) — Hom¢(A%g, M) — - -

where if w € HOIIl(c(Akg, M)a then dw(yla Y2y - .- 7yk+1) = Z(_l)iilyiw(yl) ©oo0 7gi7 000 aykJrl)‘

General g.

We have the similar Koszul complex
0 C+U(g) —U(g) @ g+ Ulg) @ AN’g -,
and the differential maps

x®y1/\---/\yk|—>Z(—1)i*1xyi®y1/\---/\y}/\---/\yk

Using the Jacobian identity, we can see that this is a differential, hence this is a complex.
The associated graded of this complex is the above example (using symmetric algebras), which
is acyclic, hence this complex is acyclic. This implies the Chevalley complex.

/ Corollary 3.

We have the following exact complex, known as the Chevalley complex, which computes
H*(g,M):

M — Homg(g, M) — Homc(A2%g, M) — ...



where if w € Homc(A*g, M), then

dw(yh ©00 7yk+1) = Z(_l)i_lyiw(yla 000 vgiv 000 ayk+1)
+ Z(_l)i+j71w([yi’ yj]7y1a ooc ayAia 000 732]’7 ooc ’yk+1)‘

i<j

/ Definition 4.

H*(g) := H*(g,1) with trivial coefficients.
It is computed by the Chevalley-Eilenberg complex

05 C—g—A%g" = APg = Alg* — ..

/ Remark 5.

This has some topological meaning if g = TG for some Lie group G. Since it’s a trivial
representation, the first sum in dw is zero, as it has the action of y; on it; thus the complex is
computed by the complex A°g* with the differential given by the second sum in dw above. But
A*g* = Q(G)kettrieht j e Left and right invariant differential forms on G, which are uniquely
determined by their values at the unit e € G. This is a subcomplex of the deRham complex Q(G). If
G is compact (over R), then we have a quasi-isomorphism Q(G)'"*f*"eht (@), hence

H*(G) = Hip(G).

Meaning of H°, H!, H?,

H(g, M) = Hom,(1, M) = M?, the space of g-invariants in M. Therefore H’(g) = C.
H'(g, M) = Ext'(1, M), so H'(g) = Hom(g, 1) = ker(g* — A%g*) = (9/[g, 0])".

Prop: H?(g) are equivalent classes of central extensions 0 — C — § — g — 0 where the
first map is the embedding of the central subalgebra. The proof: we just compare this with
the definition of H?2, which is ker(A%g* — A3g*)/im(Alg* — A2g*). Note that for any central
extension g = g & Cc, the commutator for z,y € g C g Becomes [z,y]; = [z, y]s + ¢ w(z, )
. Note that w is clearly skew-symmetric (as the difference of two commutators) hence is in
A%g*, and furthermore the Jacobi identity implies that it is in the kernel of A2g* — A3g*.
Now the choice of splitting g = g & Cc corresponds to some v € g*, which changes w by
dv = v([z,y]): the choice of splitting in the short exact sequence 0 — Cc — § — g is non-
canonical and determined up to scalar multiples of ¢, which are precisely determined by
maps g — Cc = C, which are just elements of g*. (The coboundary condition is equivalent
to the adjustment being a true lift g — g.)



Methods of computing H*(g, M)

/’ Theorem 6.

The (Chevalley) complex C*(g, M) is a g-module where the g-action commutes with the
differential, hence d is a g-endomorphism. This implies that g acts on H*(g, M), and in fact this

action is trivial.

Proof.

Let z € g, letits action be L,. We have L, = d o, + ¢, o d, where ¢+, is substitution of z; this
follows from the formula for dw. Then for a cocycle w, L,(w) = dt,(w) which is a coboundary,
hence 0 in H*.

/ Corollary 7.
Suppose g is inner graded, i.e. giving by ad, for z € g. Then

C*(9) = C*(9)a
A

where A are eigenvalues of ad,. Then by the previous theorem, all the components where A # 0
must be acyclic, so H*(g) = H*(C*(g)o)-

Sep 8

Comment on the homework.

/ Theorem 8.

g acts trivially on H*(g, M).

/ Corollary 9.

Suppose g = €D, 9, such that g; = {z € g | adpz = iz} for some h € g (i.e., this grading is
internal). Then H *(g) is concentrated in degree 0.

:= Example 10.



Suppose g is finite dimensional and simple. Now consider a principal sla C g, with elements e, h, f.

Then ady, : g — g acts by integer eigenvalues. This makes g a graded Lie algebra

o=

neZ

and since h is a regular semisimple element, we have h € go (as well as e € g2 and f € g_»).

For example, consider g = gl,,. Then a principal sl might consist of e being the matrix of all 1s
immediately above the diagonal, and zero elsewhere; f the matrix of all 1s immediately below the
diagonal and zero elsewhere; and h the diagonal matrix with entries
(n—1,n—3,n—5,...,—(n—1)). If we decompose gl,, with the ad action of this sl5. Then we

have
gl, =Vo @ Vo @ Vi D - - @ Vop_2,

where the dimensions are 1, 3, 5, . . ..

In fact, you can view gl in this way as a sum of irreducible representations of slz. The commutator
operation can be written in terms of this decomposition where the coefficients are polynomials in n.
Now if we view this n as a parameter, we can then get an infinite-dimensional Lie algebra gl, for
any t € C, which is a very interesting Lie algebra! For example, it is graded, and you can explicitly
describe the graded components. When ¢ € Z>, this algebra has a nontrivial ideal, which you can
quotient out by to get the usual gl,,. Analogously with Verma modules, they are generally
irreducible, except at (certain) integer values upon which they have a finite dimensional irreducible
quotient.

Another remark: for general ¢, gl, = U(slz)/(C — W), and for nonnegative integer ¢, this

has a finite-dimensional quotient.

:= Example 11 (Homework).

Let W = Der (C[z, 27 !]) = span{L; = zi“%} be the Witt algebra. Then ad L, = ad z% gives a
grading by the integers.

More about Lie algebra cohomology.

Note that

H*(g, M) = Ext} (1, M) = Extj,, (N, M) = H*(g, Hom,(N, M)).

9)

There are some particular meanings to cohomology groups of the adjoint representation (recall,
they are also g-modules).
So H'(g,g) are maps a : g — g such that o([X,Y]) = [a(X),Y)] + [X, a(Y)] modulo o = ad},



i.e. H'(g,g) = Der(g)/Inn(g), the derivations of g modulo the inner derivations of g.

Also, H?(g, g) consists of infinitesimal deformations of g. More precisely, this is the space of all
Lie structures [,] on g ®c C[A]/hR? which become the usual Lie bracket [, ], modulo £ (this is the
cocycle part); this is taken modulo the transformations which are identity modulo % (this is the
coboundary).

More about computations.

Laplace operator.

/ Definition 12 (Laplace operator).

Consider C*(g, M), and (, ) a Hermitian inner product on C'*. Then we can define d* the
Hermitian conjugate of d. Now define A := dd* + d*d.

/’ Theorem 13.

A commutes with d, A is self-adjoint and therefore diagonalizable, which implies that

C*(g,M)= @ C*(s, M)
A€Spec A

For A # 0, C*(g, M), is acyclic, and d|c+(g,ar), = 0, which implies that
H*(g,M) =C"(g,M)o.

If 1 and is semisimple or compact Lie algebra, then C*(g, M)y is just the subcomplex of bi-

invariant (i.e., left- and right- invariant) differential forms.

Proof.

is easy

If A £ 0, then if Aw = Aw, then w = ddTw/A. If A =0, then

0 = (Aw,w) = (dw, dw) + (dTw, dTw), now using that it's positive definite, we obtain that
they are both zero.

/ Corollary 14.

We can compute H *(g, M) for any semisimple g and finite-dimensional irreducible M: it is 0 if

M = 1 since it’s an Ext functor from trivial to nontrivial, and for M = 1, we have that A acts on



A*g* as the Casimir operator, so
(A%g™)o = (Ag")* = H*(g).

In particular, H'(g) = H?(g) = 0, so no characters, central extensions, as well as no deformations
Additionally, H],(G) = 0 for any compact connected Lie group G. This implies that H*(G) is
finite, hence 71 (G) is finite, and thus there exists a simply connected cover G which crucially is

still compact!

Furthermore, H>(g) # 0: the reason is that (A®g*)? # 0, as the commutator element is nonzero!
Since g is semisimple/reductive, the adjoint and coadjoint representations are isomorphic, so we

identify g = g*, hence any compact Lie group has a nonzero H?3.

As an additional corollary, there are no associative division algebras of dimension 8 over R. The
only parallelizable spheres are S, §3, S7. But why can’t S” be a division algebra as well? Well, if

it were, it would be a compact Lie group, and must have nonzero H 3, which isn’t the case.

Sep 11

Today, we aim to describe computation of:

H*(g) for g a semisimple/reductive Lie algebra. Will also explain how these are related to
generalized Chern classes.

H*(n) for n C g a maximal nilpotent Lie subalgebra. Will also explain how these are related
to Weyl character formulas.

Let's start with 1.

Suppose g is semisimple. Recall that for an irreducible representation M, H*(g, M) is nontrivial
iff M is trivial (reason is that Ext;l(g)(ﬂ, M) = 0). We can also use the Laplace operator
approach, which acts by Casimir element.

Our goal is compute H*(g). This is interesting! We have two approaches: Laplace operator, and
complex of bi-invariant differential forms. Then H*(g) = A®*(g*)? (invariants in the exterior power
of the co-adjoint representation). For a semisimple/reductive Lie algebra, the adjoint and
coadjoint representation are isomorphic g = g*, hence H*(g) = A°*(g)°®.

Question: What is A°*(g*)??

= Example 15.

Then g = g* = Mat,, as g-representations. Then we are considering A®(Mat,,)°"". The appropriate

version of the fundamental theorem of invariants says that this is a wedge algebra generated by



https://en.m.wikipedia.org/wiki/First_and_second_fundamental_theorems_of_invariant_theory#:~:text=In%20algebra%2C%20the%20first%20and,and%20the%20second%20the%20relations

M s tr M* for powers of k. Furthermore, observe that tr M 2* = 0 for all even integers 2k. Note
that tr M2* = tr M - M?*1 = —tr M?*1. M = —tr M?* = 0 since M, M*~! are odd powers
and the entries thus anti-commute.

T11 9812)' Then M? — < 22 + 19T T11T12 + 901229022).
To1 T2 T21T11 + T22T21 T21T12 + Ty
But 22, = z1; A @1, = 0, similarly z3, = 0 (living in the exterior algebra), hence
tr M2 = 215 A gy + Ty A T15 = 0.
As a similar exercise, tr M3 # 0.
To see why these elements generate A*(Mat,, )", note that Mat,, = V ® V* for V = C". Now
A*(Mat,,) is a quotient of the tensor algebra
T*(Mat,) =CoVV*®aVeV*V®V*®---. Now the fundamental theorem of invariant
theory says that the invariants of (V ® V*) ® (V ® V*) are given by pairing the inner two entries

As an example, consider M = (

and the outer two entries.
To see why, consider (V@ V*)@ (VR V*) ® (Ve V*).
Suppose they are matched up like this.

RN 7N
V o V) o (V © V) o (V © V) o (V & V¥

\/

Because one of them is internally paired (the third terms), this expression becomes tr M3 - tr M.
So the decomposition into the product of traces corresponds to the cycle type of pairings of the
tensor product.

The conclusion: Ty, for k = 1,2, 3, ... generate A(Mat,,)®"". Since this is an infinite number of

generators, this is dependent; so we can restrict to a finite number of generators. What is the cutoft?

/ Theorem 16.

Tor—1 for k =1,2,...,n generate A(Matn)GL". Furthermore, there are no relations.

Proof.

We want to show that T»;,_; = 0 for all k > n.

Lemma: M?" = 0. This is because M? is a n x n matrix with commutative coefficients, so we
can apply Cayley-Hamilton theorem. Then the characteristic polynomial is a polynomial whose
(non-leading) coefficients are homogeneous expressions of tr M 2* = 0, hence the
characteristic polynomial is ", thus (M?)™ = 0. (Note that this is equivalent to Amitsur-Levitski


https://en.m.wikipedia.org/wiki/First_and_second_fundamental_theorems_of_invariant_theory#:~:text=In%20algebra%2C%20the%20first%20and,and%20the%20second%20the%20relations

theorem.)
The part where there are no relations is below. O

Therefore we can compute this algebra. The conclusion:

/ Theorem 17.

H'(g[n) = A.(Tl, T3, ce 7T2n—1)-

Proof.

Note that H™ (gl, ) + 0 (since it's equal to H™ (U,, C) where U, is a compact n?-dimensional
manifold), but there is only way to obtain something of degree n? from these generators, which
isThy ANTs A --- ANTa,—1, hence must be nonzero, hence cannot have any relations (this wedge is
contained in any nontrivial ideal in A*(T4,...,Ton-1). O

/ Theorem 18.

The cohomology ring always looks like the above case: H*(g) = A(Th ..., Ty) where

degT; = 2m; — 1, m; are the exponents of g, and there are no relations amongst the 7.

Proof.

Observe that H*(g) is a Hopf algebra, because H*(g) = H*(G, C), and we have map

G x G — G (multiplication), hence obtain comultiplication map A : H*(G,C) — H*(G x G,C),
as well as a counit map obtained by the map G — {pt} inducing H*(G,C) — C.

It follows that H*(g) is supercommutative graded Hopf algebra with H%(g) = C. Therefore we
can apply the appropriate version of the Milnor-Moore theorem, which implies that H*(g) is a
free supercommutative algebra in some generators; since it’s finite-dimensional, they must
necessarily be odd degree, hence it is the free exterior power of odd degree generators. O

Sep 13

Let g be a semisimple reductive Lie algebra. Then H*(g) = A(g*)®.

/’ Theorem 19.

H*(g) is a free exterior algebra of some odd-degree generators T4, . .., T, where deg T; = 2m; + 1
where m; are the exponents of g.

/ Remark 20.


https://en.m.wikipedia.org/wiki/Milnor%E2%80%93Moore_theorem

H*(g) = Hjz(G,C), where G is a compact group.

Proof.
It will follow from the proposition below, due to the fact that H*(g) = Hjz(G, C), where G is a
compact group, and the latter is a graded Hopf algebra, obtaining comultiplication from

mul
¢ x ¢ ™™ @ and counit from G — {pt}.

/ Proposition 21 (Weaker version of Milnor-Moore).

Let H be a graded Hopf algebra H = @,  H ', where each H* is finite dimensional, H is
supercommutative, and H° = C. Then H is a free supercommutative algebra in some
homogeneous generators.

Proof.

First observe that the counit map € : H — C has the following form. Since H is graded,
e|g-0 = 0, it must annihilate everything of positive degree. Let « have degree n. This implies
that A(z) =z®1+1Qz+ > z;(1) ® a:gz) where 0 < degz; < n.

Let z,,x,, ...,z 5 be a minimal set of homogeneous generators, degz; < degzy <

Now denote H, := C(zq,...,z,), so that H; C H, C .... To show that this is a free
supercommutatlve algebra, we need to show that H,, ; ® C[z,] — H, is an isomorphism (by
C|z,], | mean the polynomial algebra if deg z,, is even, and two dimensional exterior algebra if
deg z,, is odd). Note that H,, is closed with respect to A.

Let I C H, be the ideal generated by z1,...,2,_1,22. Now consider the map
A= H, 2 H, 0 H, 2% H, © Clan) /22
Suppose there exists a nontrivial relation Zle a;i(z1,z2,...,2n-1)z = 0, of minimal degree.

We can use A’ to get a lower degree relation

Hn®(C[mn]/wi90:A Zal®1mn®1+1®xn Zzal ll®wl,
i=1

1
— E iai(T1, ... Ty 1) =0,

hence we obtain a relation of lower degree, contradiction.

About deg T;;



We can relate T; to the generators of S(g*)® = S(h)V = C[Py, Py, ..., P, where deg P, = m; + 1,
the Weyl group invariants of the symmetric algebra of the Cartan subalgebra.
Consider the Weil algebra, a differential-graded supercommutative algebra:

W(g) = (A%(g") ® $°(g%), d)

where the degree of the g* in the wedge product is 1, and the degree of the g* in the symmetric
algebra is 2. The differential (which satisfies the super Leibniz rule) looks as follows.

A g* 0 N o ®g
C 0 g* 0 S2g*

It suffices to define the differential d on the generators, i.e. the two copies of g*. On the exterior
algebra copy, i.e. the left-most column, it is the sum of two maps: one is the map g* — A2%g*
from the Chevalley complex (in green above), and the other is the isomorphism g* — g* (in red
above). On the symmetric algebra copy, i.e. the middle column, the differential is just the blue
map, sending g* — A%g* — g* ® g* (again using the Chevalley complex map).

One can check that the square of this differential is zero. As a complex, this Weil algebra is
acyclic, because it is a free supercommutative algebra generated by degree 1 space and its
differential, which is isomorphic; it is free object of this sort, hence it is acyclic. You can also use
a spectral sequence to compute the cohomology of W (g). On the E? page, we get

H*(g,5(g)) = A(g")* ® S(g7)°.
Cohomology of n_.

Let n_ C g be a maximal nilpotent subalgebra (since all of the maximal nilpotent subalgebras
are conjugate, we may choose it to be n_). Then

/ Theorem 22.

H*(n_) = @,y Céw, where deg &y = £(w).



Proof.
Here’s a sketch of the proof. We have the BGG resolution of the trivial n_-module:

C+ M(0) + P M(s;-0) -« P M(w-0).
L(w)=n
Each M(w - 0) is a free n_-module.

/ Remark 23.

This is not really an honest proof, as this uses “too much” information. In fact, it is possible to
compute the cohomology directly using the Laplace operator, which is done in a paper by Kostant.
(This was done before BGG!) He observed that you can deduce the Weyl character formula from
his method, and moreover his method is general enough that you can also use it on infinite-

dimensional Lie algebras, not just finite-dimensional ones.

Examples of infinite-dimensional Lie algebras, and their
representations.

gl is some Lie algebra of operators in C* = Clz, 27 1] = V.
Want:

operators of multiplication by 2* - abelian Lie subalgebra

differential operators, in particular W = span{ziH%}igz (these look like infinite matrices
which is zero on all but finitely many diagonals)

Generalized Jacobi matrices

Fundamental representations (representations with highest weight, whose value on only
simple root is 1, and 0 elsewhere). In the finite-dimensional case, these come from A*.
Therefore in the infinite-dimensional case these should look “something like”

A2V == span{vy, A vi, A Y —gii<iye.y | T\ Lol = |Z2o \ I| < o00.

Sep 15
Legitimizing A2V
Recollection on spinor representations

Let's consider a simple Lie algebra g[,,. Then all fundamental representations are just A*C"
where C™" denotes the tautological representation.

If we consider the fundamental representations of so,,, then we do indeed have the fundamental
representations C", A2C", etc. However, this is not all of them! There are one or two additional



fundamental representations which are not wedge powers of the tautological representation.
The reason for this is that the Lie group SO,, is not simply connected, in particular [SO,| € {2,4}
, therefore there should be fundamental representations of§5';that do not factor through SO,,.
In fact, 36_; — SO, is a central extension, so we want representations of a central extension of
SO,,.

Where do these representations come from?

Let U = C”" be a vector space with symmetric bilinear form B (non-degenerate).

/ Definition 24.

We denote the Clifford algebra C4(U) :=T(U)/(uiu2 + uaui — B(u1,u2) | ui,us € U) tobe a

quotient of the tensor algebra.

It is an odd analog of the Weyl algebra, attached to a symplectic vector space. If (V,w) is a
symplectic vector space, then the Weyl algebra is W (V) = T(V)/(viv2 — vav1 — w(v1,v2)).
It has a natural filtration by assigning degree 1 to all of the generators. Then the associated
graded of the Clifford algebra is just the exterior algebra of U, i.e.

grCU(U) = A(D).

Now suppose that V = X & X*, where X is some vector space (this is always the case when V'
is an even-dimensional symplectic vector space, as you can choose a Lagrangian subspace),
then W (V) ~ D(X), differential operators on this space.

Similarly to W (V), if U is even-dimensional, then (over C) we can always always choose a
Lagrangian subspace and a complement of a Lagrangian subspace, so we can write

U=V ®V* (where V,V* are maximal isotropic) so that B(v,v) = 0 = B(v",v") and

B(v,vY) =v"Y(v) forve V,v" € V*. Then

CLVeaV*)=DA(V)),
the algebra of super-differential operators. To any v € V, we may send

Vove (z—=vAx): AV — ALY,

V*30Y = 9, : APV — ARV,

Let’'s compute this very explicitly. Let x4, ..., z,, be a basis of V.

Letz/,...,zy, be the dual basis of V*.

The isomorphism C4(V & V*) =~ D(A*(V)) can be realized explicitly by specifying the images of
the z; and the w;/ For the z;, we map z; — (x; A —). For the =}, we map it to 9,v. But what is
the action of le_v? It acts on a monomial z;, A z;, A --- A z;, as follows. If none of the z;; are z;,
then it sends this monomial to 0. If one of the i; indeed equals i, then we permute the vectors to
make it the first entry (changing sign accordingly), then delete it. For example,



awIV(mz A\ 331) = _8$Ym1 N\ X9 = —I2.

This action is indeed well-defined and is canonical, i.e. independent of the chosen basis. It is an
easy exercise that the images of z; and xjv indeed commute in CY.

/ Proposition 25.

CUV @& V*) = End(A(V)).

/’ Remark 26.

If dim U is odd, then dim C4(U) = 24im¥U “which is not a square and thus is not a matrix algebra,

but it happens to be the direct sum of two matrix algebras.

Proof.

Here’s a sketch of a proof. By using the images of ZI?;/ we can take any nonzero element of
A(V) to 1 € A(V) by killing the vectors one by one until they are reduced to 1. Then clearly we
can produce any element of A(V') from 1 by wedging with the appropriate elements, using the
images of z;.

Constructing spinor representations

In the case of U = V & V*, we have that C¢(V & V*) =~ End(A°*(V)), and there is a unique
simple module (because it is a matrix algebra, thus the only simple is A*(V))).
It is acted on by the orthogonal group:

SO(U) — Aut(U).

On the other hand, C¢(U) is a matrix algebra, so all automorphisms are inner automorphisms.
This implies that we may define a map SO(U) — GL(A*(V)). This is a representation... right?
NO!!! Not really. It is only a projective representation, as scalars (more precisely, the center) act
by identity during conjugation. So in fact we have the following commutative square:

~—

SOU) —— SO(U)

! !

GL(A*(V)) —— PGL(A*(V))

This representation does not necessarily factor through SO(U); thus, A*(V) is a representation

of SO(U).
Now we take the differential of this representation to obtain the corresponding representation of
the Lie algebra (note that on the level of Lie algebras, the central extension is trivial),



so(U) — CL(U).

On the level of Lie algebras, we can describe this homomorphism explicitly. We have that
s0(U) = A%(U). On the other hand, C£(U) > A%(U) = {uiuz — usu1 | u1,us € U}, so the map of
Lie algebras is just the composite

s0(U) — A2(U) — CL(U).

It follows that so(U) is just the space of quadratic elements of the Clifford algebra C4(U).

In particular if U = V @& V*, then we have a copy of gl(V) C C¢(U) generated by elements xzx;/
(or, more precisely, z;z} — z;z;). This copy of gl(V') is contained in the copy of so(U), but so(U)
has additional generators, z;z; — z;z; and z/z’ — m;/a:lv (Recall that the standard presentation

(g
I
of the form on so(U) is (3_ 0>')

Semiifinite wedge spaces

It's an infinite-dimensional analogue of this construction.

Consider V = C|z,z '] and V*. Now we consider V as a graded space with deg z* = i. We may
consider V* as the restricted dual of V, i.e. the direct sum of the duals of the graded
components of V. Then we have the natural identification

d 1
V* >~ Cle, zfl];, (f,9) = Res,—0g(f) (i.e., coefficient of ;)

We can now consider C4(V @ V*).

2 Definition 27 (Clifford algebra).

Let V = C[z, 2 ] and V* its restricted dual as above. Define

CUVeoV*)=C,y; |i€Z)/T,
I={i+j+¥jhi =0, Yjvj+vj; =0, Pih] +Pjwbi = dirjo}-

Here, we identify 9; <+ 2% and ¥} > 2" 1 dz.

Now, we want an irreducible representation of C¢(V & V*) containing ¥ := 1o A1 A2 A .. ..
What properties should ¥ satisfy? Well, we want ¢; A ¥ =0 for: > 0and ;¥ =0fori >0
(because ¢} = 0y ;).

Now let us write

VeV = V., & V_
~ ~—~—
Clz]®Clz]ldz  27ICl[z l@z"1C[z~1]dz



These are both isotropic subspaces with respect to the bilinear form above. Therefore within the
Clifford algebra, we have

CUV ®V*) S A(VL), A(V).

Now consider C{(V & V*) ®,(v,) 1. This is the biggest cyclic representation of C¢ containing ¥,
i.e. the universal representation containing ¥.

Some facts which will be proved next time:

CL(Ve V") XAV 1= @ ATHE,
k=—00
Just as how we have a copy of gl(V) C C¢(V & V*), we have a copy of gl (generalized Jacobi
matrices, consisting of zeros on all but finitely many diagonals) which can be embedded into a
completion of CL(V @ V*) ~ AT+ .

Sep 18

Today we will continue discussion of F := A~ **.

Sources of central extensions

:= Example 28.

Let’s look at finite-dimensional spinor representations. Let U be an orthogonal vector space, and
B:U x U — C the corresponding symmetric bilinear form.

Then C4(U) is naturally filtered by the degree of the generators (i.e. degz = 1 for all z € U). It is
not graded because the supercommutator from two elements of U can be a nonzero constant, but it
is still Z/2Z.-graded because the relations in CZ contains only terms of even degree. Therefore we

have a canonical splitting

CUU) = CL(U)eyen ® CL(U ) 0dq-

<2
even

Inside the even part, we can consider the subspace C¢(U) of elements of degree < 2. Thisis a
nice subspace, because it is a Lie subalgebra with respect to the commutator. Indeed, the
commutator of any two elements in this subspace is even and degree is strictly less than 4, hence
must lie in this subspace. Moreover, we have a homomorphism

cet)=2, 2L Ende(U),

even
<1

y—=[y,—]onU C CUU), 4q-

(Note that the commutator with U lands in C4(U) 53,
In fact, the image of ad lands in so(U, B): using the relation in C¥, we have that



B(ady:vl, 132) 4 B(:Itl, a.dyl’z) = (adywl)xz -+ :I:28.dyiL‘1 —+ mlady:r:z —+ (ady$2)$1,
= [y, 2123 + zy24],
= [y’ B(ml’mZ)] =0,

since B(zy, z5) € C.
So we have a homomorphism

cuU, B) 2% so(U, B),
which annihilates only constants, i.e. kerad = C = C/£=0.

Let ¢ : s0(U, B) — CL(U)s2, be a splitting. Let F be an irreducible representation of C4(U). Then
¢ makes F' a representation of so(U, B), as we have a composition of maps
so(U, B) — CLU)S2, — ¢l(F), up to an additive constant, hence F is a representation of some

even

central extension of so(U, B). But we have already constructed a central extension:

0 C— 2. s s0(U,B) — 0,

even

where ad splits the injection so(U, B) — CE(U, B)=2 — CL(U, B).

ad
Now we know that the composite so(U, B) % ce (U) — Endc(C4(U)) is a homomorphism.
Suppose F'is a(n irreducible) representation of C4(U), with mapping 7 : C¢(U) — Endc(F'). Then
mo ¢ :50(U,B) — End(F) turns ¢ into a representation of F'... up to adding some endomorphism

(of the representation):

(7o @) ([y1,92]) = [mo (y1), 70 p(y2)] + 2.

This z term is something which commutes with everything in the Clifford algebra. If F' is
irreducible, then by the Schur lemma, z € C - Id, hence some central extension of so(U, B) acts on
F'. (In general, we only require a map such that the composition is a homomorphism, but the two

defining maps do not need to be.)

Generalization to C¢(C[z, 2] @ C[z, 2 1] dz) <= gl

First, a technical point: Schur lemma requires vector spaces to be finite-dimensional.

/ Lemma 29 (Schur lemma, infinite-dimensional analogue).

Let A be an associative C-algebra, M a simple A-module of countable dimension. Then
Endas(M) =C.

Proof.
First, End 4 (M) is a division algebra, since M is simple.



Second, dim End 4 (M) is countable since M is cyclic, hence if M = A - m, then any

¢ € End (M) is determined by ¢(m) € M, which has countable dimension.

Third, for any nonconstant z € End 4(M), z must be transcendental over C (because there are
no finite extensions of C, thus z cannot satisfy a polynomial identity). Suppose for the sake of
contradiction that C(z) C End 4(M). But C(z) is already of uncountable dimension:

{1 | c € C} are linearly independent, else there would be a polynomial relation, hence
contradicting that z must be transcendental. It follows that there exist no nonconstant functions
in End 4(M).

CUV & V*)
Let V = C[z,z7!] and V* = Clz, 2~ !] be the restricted dual of V. Recall that
CUV @ V™) = Clopy, ¢ | i € Z)/ {thith; +jthi = 0, i; +9j; =0, it +9jehi = Gy}
Further, recall that ¢, < 2 and ¢} < zi~1 dz.
Now we define the fermion space to be the semiinfinite wedge product.
/ Definition 30 (fermion space).

We define the fermion space F to be

F = AT(Clz,27]) = C¢/Z, where
T = left ideal generated by 9; for ¢ > 0 and ¥; for i > 0.

This space has a monomial basis which can be indexed as follows:
{H i [[ ¥ | S1 C Zeo, S2 C Zey, both finite}.
1€8; JES,
Therefore we have an alternative description as:
F = Span{v;, Avi, A -+ |11 <i2 <...,{i1,%2,...} \ Z>0, Z>0 \ {41, %2, ...} are finite}.

Now we may identify 1 <> 1y Ay APy A ..., and 9; <> 9; A — and 9] <> 9y_,. Under this
correspondence, we have that

Medlwo: A

IS JE€Ss ke(Zso\—S2)US,

Gradings on F

Charge



/ Definition 31 (charge).

We define charge to be
deg /\ ¥r =S\ Zxo| — |Zx0\ S
keS
Here, deg 1o A1 A --- =0, deg®; = 1, and deg 9p; = —1 (as operators).

According to this, we have the grading on F as follows:

F=XT"W)= a7,
——
k  charge=k

Energy

/ Definition 32 (energy).

We define energy to be
deg A\ p=— > k+ > k
keS keS\Zxo k€Z>0\S
Here, deg o A ¢1 A --- = 0, and degy; = —i = deg; (as operators).
/ Remark 33.

Charge can be any integer, but energy is always nonnonnegative (on the infinite wedges)!

The mapping gl — C/(U)

The space gl,, = gl(C[z,2z']) has a basis of E;; (where the ith basis element of C[z, z7'] is z').
Then gl > E;; — ¢p*; € CLU).

/ Lemma 34.

By an easy computation, we can see that



0 k#j,
¢i k= Js
0 k # 1,
[Dih” ;9% 4] =
oo k=1

All this gives us the standard formula:

[Eij, Br) = Eabj—k — Erjli—i.
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A=+ (V), central extensions of gl__

/ Definition 35.

Let gl/_ consist of endomorphisms of V = C|[z, z~1] with finitely many nonzero coefficients in the
basis {v; = 2! | i € Z}.

Let g7 O glZ_ consist of “generalized Jacobi matrices” - endomorphisms of V with nonzero
coefficients on finitely many diagonals, as illustrated below (imagine that it goes off to infinity in

every direction):

/**0000000000\
*x % 0 0O0OOOOOTU OO
x k% 0O 00O 0 0 O0O0
x x x x x 0 0 0 0 0 0 O
x %k x *x x 0 0 0 0 0 O
0 = x * * x x 0 0 0 0 O
0 0 « « x x x x 0 0 0 O
0 0 0 « * x *x % x 0 0 O
0 000 « x *x * x *x 0 O
0 00O OO x *x *x x *x x 0
0 00O OO 0O *x %= *x * =% x
\0 0 0 0000 % % * %

/ Definition 36 (Witt algebra).

Let V = Clz, 27 '] = span{z*} and W = span{L; := —2"1-2} be the Witt algebra. In the Witt

algebra we have the relations [Ly, Ly,| = (n — m) Ly .



We have
alf. cglZ ov,w.

The Z-grading on glZ_, gl”. comes from that on V, where deg z* = i. Therefore deg E;; = i — 7,
and this extends to g[go (which restricts to V, W).

Now suppose that g = €, gi, and g contains the subalgebras g0, go, and g~ (it is the direct
sum of them). Note that this choice is not unique, nor is it canonical. However, we must choose
one to define category O.

As an example, for a finite-dimensional semisimple g, grading comes from adj, where h is part
of a principal sl» triple. Then g.o =n_, g-o =ns,and go =h. Then g =g_ ® go ® g+ is just the
Cartan decomposition.

Then we can consider the category O of g-modules.

/ Definition 37.

Let g be a graded Lie algebra. A g-module M is in category-Q if:

M is graded, upper bounded degree, and has finite dimensional graded components;
M = @,., M; where M; = 0 fori > 0, dim M; < oo, and g;M; C M;.;
g-0 acts locally nilpotently (implied by the first point; conversely, along with some other mild

assumption i.e. finitely generated, implies the first point);

go acts semisimply (this is a standard requirement for category O, but is not implied by any of

the previous points).

Just as in the finite-dimensional case, U(g) acts on any M € O.

:= Example 38.
Let M () be the Verma module for sl3. Consider the sum
1+ fe+ f2e® + f2e + ... ¢ U(sly).

However, this is a well-defined action on M (), because for any given element of M (), only
finitely many terms in this infinite sum act nontrivially. This can be formalized as follows.

Let J- n be the left ideal in ¢(g) generated by g~ n := @,;- y 9i- We have that J-n D J>n41, and
Nnez J>~ = 0. Then consider

Zj{-(};’) = lim U(g)/J>n.

oo N

Another option to get a bigger completion, is to define J- x to be the left ideal generated by



N e

U(g)-n- The difference between this definition and U(g) is that in U(g), the infinite series must be
of bounded degree; in this alternate bigger completion, the degree can be unbounded.

Similarly, we can define a completion CZ if C¢ = C¢(C[z, 2~ '] & C|z,z ' d2]), where

/ Proposition 39.

We have an embedding of Lie algebras g[g:o < CY. This is done by E;; — ¢yp” ;.

~J - —
We also have an embedding gl < C¥, where gl is a central extension of gl .

The first embedding fails to extend to an embedding of g[go. Imagine we have some infinite sum
> i jr bijtpiep; for some fixed k. We want finitely many terms outside the ideal C4(¢~n, 9% y).
We want to swap the factors +; and ¢} so that we have positive indices on the right. If k # 0,
then there is no issue, since ;97 = —v74;. The problem arises when k£ = 0: we have to sum up
infinitely many constants. This is the reason why the central extension arises.

The solution is that we must change the original embedding g[go — CY: we send

(Y™,  j<O0
E..

Z]'—>

—gt G20

This is not an embedding of Lie algebras, but it is a homomorphism from a central extension of
Lie algebras. (If we change the cutoff from 0 to something else, say 1, we achieve more or less
the same result.) This is an embedding of a trivial central extension of g[ﬁo. However, it extends

to an embedding gl < C¥.
To compute the cocycle, we wish to compute the new commutators of the embedded elements

[Eij, Erilnew = 0j=tEi1 — 8i=1Bx; + w(Eij, Br),
where the cocycle w is nonzero iff K = j and | = 4. Then it turns out that
(0 4,7>0,

0 i,j<0,

w(Eij, Byr) = 6i=165=; -
1 §>0,j<0,

This is well-defined on generalized Jacobi matrices: on a generalized Jacobi matrix as follows,



(**0000000000\
* x x 0 0 0 0 0 0 0 0 O
*x *x x x 0 0 0 0 0 0 O O
x x x x x 0 0 0 0 0 0 O
x x x x x x 0 0 0 0 0 O
0 « x x = x = 0 0 0 0 O
0 0 x * = *x x % 0 0 0 O
0 00 = = *x * x x 0 0 O
0 000 « *x * x *x % 0 O
0 00O 0O 0O *x * x *x % x 0
0 00O O O 0 % % % % % =x
000000 0 * * * % %

there may be infinitely many nonzero entries, but the only entries which produce nonzero
cocycles come from the region in red (bounded by the axes), which is finite.

/’ Remark 40.

This cocycle is nicknamed the “Japanese cocycle” because it was first introduced by Date, Jimbo,

Kashiwara, and Miwa sometime in the 1980s.

In the second homework, we compute the restrictions of this cocycle to the abelian Lie algebra
and to the Witt algebra.

‘= Example 41.

Let’s compute the central extension of the abelian algebra V = Clz, 27 1].

Let a; = z'. Then a; consists of a single diagonal of 1s shifted by <. For example, a4 looks like:

(! )




Then [ai, @j]new = [@i, @jlold + ©0i+j=0 - 1.
=0
Then we get a central extension called the Heisenberg algebra:

0-C— a —V = 0.
~~
Heisenberg algebra

/ Remark 42.

An important observation is that A%“(V) is a category O object in C¢-mod. This implies that

~J o0
a, Vir C glo, ~ AT (V),

where the Virasoro algebra Vir is the unique (up to isomorphism) nontrivial central extension of the
Witt algebra W.

Sep 25
Heisenberg algebra actionon Az V

Recall that we defined the fermion space F in Definition 30 (fermion space).

/ Remark 43.

Unsurprisingly, F is related to fermions.

Now C? ~ F, with ¥; = v; A —, and ¢*;, = 8,,.
Recall from Example 41 that we computed the central extension of the abelian Lie algebra
Clz,z71].
// Definition 44 (Heisenberg algebra).
We define the Heisenberg algebra a to be the central extension of the abelian Lie algebra
0— Cc— a— Clz,2z7] —0.

Explicitly,

—J
gl D a=Span{c,a; |1 €Z}, [c,—]=0, I[ai,a;]=dirj0c.



/ Definition 45 (Fermion space as a Heisenberg algebra module).

We defined the Fermion space F as a semiinfinite wedge product, and a quotient of the Clifford

algebra, in “b98ac3. We now define the a-module structure on it.

The action of a; on F is given by

Y= D,

$<0,r+s=1

with this alternate form if 2 # 0. When defined in this way, ag can act by any scalar, and we may
choose this scalar. However, there is a natural choice for ag following this definition: we send

ag = Y YsPi— Y Pips.

s>0 s<0

Is a ~ F irreducible?

Since a acts on F, the first question we ask is: is this representation irreducible?
NO.
We have two gradings: charge and energy, see Definition 31 (charge) and Definition 32

(energy).
Charge is by eigenvalues of ag, so

degvi, Avi, A+ = [T\ Zxo| — |Z>0 \ I|.

The charge comes from comparison to the vacuum vector vo A vy A .. ..
This grading splits 7 = @,,,cz Fm, and this grading is preserved by a, because everything in the
Heisenberg algebra commutes with ay. In particular, each F,, is a subrepresentation.

The next question: is F,, irreducible?
Now let us first take a brief detour to discuss what representations of the Heisenberg algebra a
look like in general.

Category O for a
We first have the grading on a as follows: dega; = i, and degc = 0.

Then we write

a= n_ @ b & n,
~—~— ~— ~—
Span{a:|i<0}  Span{ao,c}  Span{a:|i>0}

¢ Definition 46 (category-O(a)).



The objects of category-O for the Heisenberg algebra a are a-modules M which are:

graded, M = @ M;, M; are finite-dimensional and a;M; C M;_;,
bounded, i.e. M; = 0 forz > 0,

h-semisimple.

¢ Definition 47 (Fock space).

The model objects in category-O(a) are the “Verma” modules induced from one-dimensional

bh @ n representations C,
Fy = U(a) ®upan.) Cx
where C,, satisfies the following properties:
dimC, =1,

I1+(CX = 0.
We call the F', Fock spaces.

Now x : h — C is determined by two numbers: A, which is the eigenvalue of ay, and C, which is
the eigenvalue of c. Let us denote x by (4, C).

As graded vector spaces, F, = Cla_,a_,,.. ], the “symmetric polynomials of infinitely many
variables.” Making this identification, what is the action of a on this space? The answer is that

a; - — 1< 0,
acts by
a;— S A-— i1=0
C * 7: * 80{71. i > 0.
This is a very explicit and concrete description of this module. From this description, it is easy to

see that:

/ Proposition 48.

If C # 0, then F) is irreducible.

Proof.
Suppose we have some polynomial p € Cla_1,a—2,...], where p = a™;a", - - - o™, is (one of) the



highest degree monomials.
Then

o ---9u PeC—{0}, U(a)l=F,.
Block decomposition

It follows that O = @, O.

/ Proposition 49.

Let x = (4,C). Then C # 0 — O,, contains unique simple object F, .

Proof.
M > v contains a highest degree vector v satisfying:

tl_,_v - 0
a.v = Av
c¢v = Cw.

Then F, — M sends 1  v.
This has to be an embedding as 7, is simple, hence any M < O, contains a copy of 7, .
Furthermore, the A, C are uniquely determined by x, hence the result.

/ Proposition 50.

In fact, O, is a semisimple category and every object is a direct sum of F,s, i.e.

Proof.
Suppose we had an extension

0—Fy,—M—F, —0.

Then take any homogeneous preimage v’ of 1 € F, in M. On the other hand, 7, 51— v e M,
and v, v’ are linearly independent highest weight vectors. Each of them generates a copy of F,
in M, and they do not intersect (as otherwise they would intersect in a proper submodule,
contradicting the fact that F, is simple).

/ Remark 51.



This is a standard argument when working in category O.

Now crucially, this implies that all F,,, and even F, are category O-representations. It remains
to show that there are finitely many elements of a fixed energy.

We know that energy is nonnegative, and moreover there is a unique vector with minimal
energy 0: namely the vacuum vector ¢ := vo A v1 A ---. Now we can get any vector by applying
; for i < 0, which has degree —i > 0, and v} for i < 0, which still has (nonnegative) degree
—i > 0. This implies that there are only finitely many monomial vectors with a given positive
degree. This satisfies the condition that the graded components F, are finite-dimensional.

But the graded components F,, are graded by charge, not energy! Fortunately, we see that F is
a direct sum of F,, where x = (4, 1) for different A’s (note that ¢ always acts by 1, hence C =1,
but ay gives the charge degree). In particular, F,, = Frfjl" so the F,, are also finite dimensional,
thus F,,, and F are category O objects.

Next time: we compare the characters to find the IV (spoiler: they are actually always 1). We will
compute

ch F =) "t dim F,,[N],

where m is the charge and N is energy, and same for F,,, ;.
This will give us some nontrivial combinatorial formula, which is known as the Jacobi triple
product identity.

Sep 27

Some combinatorics

Recall Definition 30 (fermion space)

Fi=ATT(V) = Cl(Yis V7 )icz/Cl- {5, ¥ |1 >0, > 0} 21 =T =vgAvy A....
(Here the F stands for “fermion.”)
Gradings:

Recall also the charge and energy gradings: Definition 31 (charge) and Definition 32 (energy).

Charge

The charge grading satisfies C(¥) = 0, C(¢;) = 1, and C(¢}) = —1.



Energy

The energy grading satisfies e(¥) = 0, e(v;) = —i = e(¥}).
The energy degree on F is always nonnegative! This is because F = A(¢i, 4} | i < 0,5 <0} - ¥

Therefore

F= P Fun

meZ,k€Z g

where m is the charge and k is the energy.

/ Definition 52 (character of F).

We can write the character of F, a generating function, as

chF = dim F,, 4t"q" € Z[t, ¢t ~][[q]]-

/ Proposition 53.

chF = <H(1 + tqi)> (H(l +t_1qj)>.

i>0 3>0

JF as an a-mod

Recall from 207753e that we have that

F=F

X

as an a-mod, where a is the Heisenberg algebra. The space F is called the Fock space
representation of the Heisenberg algebra a.

Recall that  is determined by a pair (A4, C), where A is the ay-eigenvalue and C'is the c-
eigenvalue. In 7, we have that C' = 1 always, and A = m when F, C F,,, the charge. So in fact

F=pFi.

meZ

Our first task is to determine chF,, ;.

Note that as a vector space,



Fm,l = (C[a,l, a—z,.. ] . 1,

where 1 has charge m (and some unspecified energy).
Let us recall that

ar= Y i,

i+j=r

hence the charge of each a, is 0 (it is a sum of monomials with exactly one v; and one ¢, thus
has 1 — 1 charge), while the energy of each a, is —r; it follows that a_; has energy 1, a_, has
energy 2, etc.

So 1 has charge m and unspecified energy e, while the character of Cla_;,a_,,...] whichis a
symmetric algebra with generators of degree 1,2, 3, ... hence has character [],_, ﬁ
Therefore we have that

and we still need to determine the energy e.

Therefore we want to find the relevant coefficients IV,, such that

(Iﬂl+w5)<fﬂl+tﬁﬁ): Ej‘ﬂﬁwﬂjqur

i>0 3>0 meZL,e=? i>0

(We still don’t know what’s going on with e.)

Describing all monomials in F,, ;.

Fix m € Z. Now we describe all monomials in F, ;.

Observation: let us describe the minimal k£ such that F,,, ; # 0.

Suppose m > 0. Then the minimal energy of a vector is the “dense” monomial

Vom AV mia Ao Av 3 Av_1 Avg Avi A ..., with no holes. The energy of this is k = 22"
Observation: Every possible monomial (of a fixed charge) can be produced from a “dense”

monomial (with no holes) by moving some of the indices to a lower index. (Depicted below)

(£ Nl e
X X x X x KX x
—t—1— —
-5 -4 “3-2 1 0 v 2 g

How does the energy change upon shifting these indices? We may assign \; to be the distance
the first vector moves, )\, the distance the second vector moves, etc. We observe that



A1 > A2 > A3 > ... and for all sufficiently large i, A; = 0. (In the above example, A\; = 2,
A2 = A3 =1, and all remaining \; = 0.)
This means that to any monomial, we may assign a partition - equivalently, a Young diagram! In

the above example, we have:
-
‘ [ 4

)\z'/'
A,:]

We know from the first observation that the minimal energy of any monomial with charge m is
M. How much larger is the energy of a monomial with associated Young diagram 7?7 Well,
then answer is simply |7 |: the number of boxes. In other words, the energy of a monomial with
charge m is (m“ + |T|. (In the above example, m = 3 and |T | = 5, so the energy is 11.) It
follows that partltlons of d give us the charge-m-monomials with energy d more than the

minimal energy. This is summarized below.

¢ Proposition 54.

Let P(d) denote the number of partitions of d. Then

m{m+ m(m+ 1
chF,, = tqui’_ll Z P(d)q® = tquZ_lL H Tt
>0 + 4

But now we are done! Because then F,, has the same size as the Fock space Fi, 1, so
Fm = Fyp 1 and all multiplicities are 1.

Jacobi triple product identity

¢ Theorem 55 (Jacobi triple product identity).

H(1+tqi) H(1+t_1qj)H 14" Zt qm“;H .

i>0 3=0 k>0 meZ



/ Corollary 56.

Fm 1s irreducible as an a-module.

Some consequences of Jacobi triple product identity

The Jacobi triple product identity is

[[a+t) [Ja+t¢) [ -q") =D trq 5

>0 7>0 k>0 meZ

If we expand [],-,(1 — ¢*), we will see that most of the coefficients are zero, and the remaining
coefficients are +1, precisely at the pentagonal numbers, due to Euler.
The precise formula, known as the pentagonal number theorem, is:

/ Theorem 57 (Euler pentagonal number theorem).

[[a-ab =3 ()™

k>0 meZ

It turns out that this can be deduced from the Jacobi triple product identity by substituting g = z3
and t = —z~!. This is a very important identity!

Now consider the negative part of the Witt algebra,
Wy = Span{Ll, Lo, .. } cw.

This is a maximal nilpotent subalgebra of W, and the gradings are given by deg L; = ¢ (from the
action of ad Ly). Now recall from Sep 13 that the cohomology of a maximal nilpotent subalgebra
is related to BGG resolutions.

Then H*(W,) = H(A*(W?)), where A*(W7) has one generator in degree 1, one generator in
degree 2, etc. So the complex A*(W7) is graded both by the e and by the generators from the
space itself. The character of this complex is precisely [];-,(1 — z*).

/ Theorem 58 (L. Goncharova).

Form > 0,

dim H™(W) = 2,

m(3m=1)

and the degrees are precisely the values



/’ Remark 59.

The proof was later simplified by Feigen-Fuks using the Laplace operator.

More precisely, the complex A®*(W}) obtains a grading from ad Lo and the cohomology groups

inherit this grading. It turns out that dim H™ (W) = 2 for any m > 0, and the nonzero graded

. m(3m=+1)
components are precisely the values 5

Sep 29

Today we will discuss the combinatorics from last class, and explain the relation of the theorem

from last class to symmetric polynomials.

Euler pentagonal number formula

Recall from last class, Theorem 57 (Euler pentagonal number theorem) tells us that

[[a-2) =3 (-)ma™7

>0 meZ

Last time we proved this identity by substituting particular values into the Jacobi triple product
identity. Let us see a combinatorial proof of this identity.

Proof.

The idea is that the left hand side is some Euler characteristic.

First,

n

(g+(n) — g-(n))z",

[M]¢

[I0 - =

>0 n

Il
o

where ¢, (n) denotes the number of partitions of n into an even number of different parts, and
q_(n) denotes the number of partitions of n into an odd number of different parts.

Let g(n, k) be the number of partitions of n into k different parts, i.e.

g, k) :=#{n=A+---+ X | Ar > Ay > -+ > A > 0}. It follows that ¢, (n) = ) g(n,2m) and
q-(n) = > q(n,2m +1).

Consider the graded vector space

C*(n) = @ C*(n), CF(n)=C4™Y  basis given by partitions as above.

Let us define the differential d : C*(n) — C*™(n). Let e, denote the basis element associated
to the partition \ of n. Define X’ to be the partition constructed as follows. Consider a Young

tableaux associated to A (as below). We then take boxes off of the furthest diagonal, as far as
we can, and then move them to the bottom to form a new row. If we cannot do this (i.e., if the



new bottom row is not shorter than the original bottom row and thus is not a valid Young
tableaux with strictly decreasing rows), then set d(e)) = 0. Otherwise, set d(e)) = ey

M ]_1 | M-l
A | J >‘

>\= / )‘3\> j>\3'|,-'
N %)4
* 5
¢ >

Ra N

€>\~_§0

It turns out that d> = 0. This is because the diagonal of the newly formed Young tableaux is at
least the length of the diagonal of the original Young tableaux.

Now what is H*(n), the cohomology of this complex? It is clear that H*(n) is the number of
such that d(\) = 0 and there does not exist X such that d(X) = X. The first condition, d()) = 0, is
equivalent to the length of the diagonal being at least the length of the bottom row. The second
condition, A ¢ d(C*1), is equivalent to the condition that we cannot put the last row as the
diagonal. But in fact there are only two possibilities illustrated below: it is an m x m square with
a staircase attached in two possible ways:

\\M = 2) w@?

These give m? + 2 — mCrl) gng 2 4 mtl) — mGmil) | respectively.
Now the left hand side of Euler pentagonal number identity is just the generating function of the
Euler characteristic of this complex, while the right hand side is the generating function for the

cohomology of the complex.

m(m+1) m(3m+1)

/’ Remark 60.

What is unknown about this (and is a very interesting question) is whether we can reduce the

computation of H (W), the Witt algebra, to some complex using this method.

ATH(V)=F = @pez Fn

Recall (see Definition 30 (fermion space), Definition 47 (Fock space)) that F is the fermion
space, F,, is the Fock space (aka boson space), and the F,,, are the decomposition according
to the charge grading. (This is known as the boson-fermion correspondence.)




This is a bit surprising: something which is an exterior algebra looks like something which is a
direct sum of symmetric algebras (recall that F,, is a free module over a symmetric algebra,
namely F,, = Cla_1,a_3,...] - 1). This is impossible in finite dimensional case, as the exterior
part is finite dimensional while the symmetric part is infinite dimensional. But in the infinite-
dimensional case, this is actually not that surprising!

:= Example 61 (easiest infinite-dimensional example).

Consider C[z]. Then Sym"(C[z]) = (C[z]®")%" = C[z1, ..., z,]" which is the algebra of
symmetric polynomials. But recall that this is just C[ey, e, . . ., 5] where ey, is the kth elementary
symmetric polynomial (of degree k); this is also equal to Cp1, . .., ps] where pr, = 377, xf is the

kth power sum; there are many other presentations but they all have generators in degree 1,2,...,n

Now A™(C[z]) = Clz1, . .., zn| V™0 (e p(z1,. .., Tn)|s—z, = 0). But then each
polynomial is divisible by [[;- ;(z; — =), and furthermore the quotient is a symmetric polynomial,

hence

A™(Clz]) = [ (=i — z,)Clz,. .., 2],

i>]

so the two spaces differ by just a grading, induced by multiplication by the factor [[,. ;(zi — z;).

Now we need the basis in C[z1, ..., z,]°" given by the monomial basis in A"(C|z]): these are

)\1+n—1wé\2+n—2 .

precisely alternations of a7 ..z for all possible partitions

A= (A1 > A2 > .-+ > \p). But this is the same as the determinant of the matrix given by

(aij =z ). Now the factor from above is just the determinant of the Vandermonde determinant

of the matrix (b;; = «

71—
J
basis in A™(C[z]) is just the ratio of these two determinants. We call these basis elements

1), so the basis elements in C[z, .. ., x,]5" corresponding to the monomial

sa(z1,...,xy) the Schur polynomials. These form a natural basis of C[z1, . .. ,xn]S"!
The Schur polynomials can be regarded as a polynomial in {eq, ..., ey}, orin {p1,...,pp}, orin

any other generating set.

/ Proposition 62.
The presentation of the Schur polynomial does not depend on n, i.e.

sx(zi,y.-.,2,) = Sa(p1, D2y ---)-

Now recall that the charge 0 part of the fermion space F, namely F,, is identified with the Fock
space Fy = Cla_y,...]. It has a monomial basis, ¥, for all possible partitions A, where



Uy =03\ AV_\41 A AV_) 4n-1 AUpA...,Where A= (A1 > Ay > - > X, > 0).
We'd like to identify ¥\ as a polynomial in the a_;, using the identification Fy = Cla_1,a_2,...].

/ Theorem 63.

‘I’)\ = SA(a,l,a,g, ey Q_py .. .)‘I/().

The proof will be next time, but the proof uses the presentation of Schur polynomials above,
namely the interpretation of Schur polynomials as a monomial basis in A™(Cl[z]).
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Boson-fermion correspondence «— symmetric polynomials
Let’s first recall some properties of the ring of symmetric polynomials. Recall that

(C[wla"'axN]SN :C[ela"'aen]a €m = Z Ly Ly *** Ly

1<ii<in<- - -<im<N

The polynomial e,, is called the mth elementary symmetric polynomial.
However, this is not the only presentation. We have other generators:

hm = E xi, -+ x; , completesymmetric polynomial,
1<in<io< - -<im<N
N

Pm = E x;', POWET sums.
i=1

¢ Proposition 64.

(C[acl, oo ,$N]SN = (C[hl, .. ,hN] = C[pla ce ,pN]

/’ Remark 65.

Note that the first equality is true over Z, but the second is only true over Q! So power sums require
more than just integers to achieve equality.

Proof.

We want to express the e;, h; in terms of p;. To do this, we want to write the generator series for
each set of generators.

We have the generating series



So we have that
(1—ert+egt? —...) 1+ hit+hot’> +...)=1.

From this we may write the h; in terms of e;; for example, h; = e1, ho = €2 — es, eftc.
Now we may write the generating series for p,, as

tmfl_ V& mtmfl_ al L
2pmt™T =3 D @t =) T

=1 m=1 i1 Zi

To achieve something of this form, we apply 9; log to the generating series for e,,.

S (—=1)™me,,t™ 1
= 0;1o (1 —2z;t) = = mt™ L
145 (—D)mentm ¢ g]]( £ 1 zt ;p

Mz

It follows that

Z(—l)mmemtm 1- <metm 1) <1+Z(—1)memtm>.

Now using this identity, we can express e in terms of p, and vice versa.

We have surjections

0
7n : Clzy, ..., ¢N, Ty A N Clz1,...,zN]"

which are homomorphisms of graded algebras.
Furthermore, for m < N + 1, we have e,, — e, and the kernel of this map is (en1).
This means that we can define the inverse limit of the symmetric algebras.

/ Definition 66 (infinite symmetric algebra).

Define

S := graded limNC[acl,wz, . ,wN]SN = Cler, ey« s€my--.]-
o0

(We require the inverse limit over the graded components so as not to obtain infinite series.)



/ Proposition 67.

7N (hm) = hm and 7N (pPm) = Pm, so we have well-define elements py,, hm € S, hence

S = (C[hl, hz, .. ] = (C[pl,p2, .. ]

Natural bases of S

We have Clzy,...,zy]%" > monomial symmetric functions m for partitions
A=A > Ay >...,> Ay of length N. By definition,

— A A
my = E 'Tz'll"'mz']f,v’

where the sum runs over all possible monomials of the above form.
Warning!! this is NOT just the symmetrization; for example if two \; are equal, then we only
count that monomial once, e.g. for N = 2 and (1, 1) partition, we have m11 = es = z1z2, NOT

r1xo + T2x1.

Now C[z1,...,zn]°" contains the Schur polynomials A = (A\; > --- > A, > 0). This comes from
identifying Clz1,...,zn5]% = Clz1,..., 28] [];;(%: — z,) of skew-symmetric functions, and
the latter has a monomial skew-symmetric basis identified with Schur polynomials.

/ Proposition 68.

Recall from Sep 29 that s is a ratio of two determinants. Then the leading term is m and the

remaining terms are smaller:

Sy =my + Z(*) C My

H<A

In other words, the sy is upper triangular in the basis of m,,.

¢ Proposition 69.

wn(my) = my and 7y (sy) = s,. This implies that we have bases m, s, € S indexed by all

partitions (in contrast, the discussion above limits the partitions to V).

¢ Theorem 70.

We have an isomorphism



S~ Fy=Cla-1,a-2,...], S3pi—a_n.

This is clear, as they are both just graded rings of polynomials in infinitely many variables. But
furthermore, under the isomorphism Fy = Fj, the monomial basis ¥ of Fy corresponds to the
Schur polynomial basis sy of Fj.

Proof.
Consider the following finite approximation.

AN(Cl1] - 2N = F,
sending
§|—>§/\vN/\vN+1A....

This is an isomorphism on all graded components of this space of energy < N. Furthermore, on
these graded components, the morphism commutes with the action of

a_ = Span{a_1,a_2,...} C a.

Moreover, identifying 2! < z, we have

N 17 N-1\ ~ S -1 -1
AV(C[z YY) = Clan, 2] [ (2725,
i>j
where monomials correspond to monomial skew-symmetric functions.

Finally, we note that a_,, acts as multiplication by p,, on Clz1,...,zn]"" [T, (z;" — 2;1).

Why is this? Well, (C[z~1zV")*Y = Cla1,...,zn] -2}V -2}, and the elements of this Lie
algebra act by the Leibniz rule:

z—mp—)z_m®1®---®1—|—1®Z_m®1®---®1—|—---+1®--'®1®Z_m:(1371“—1—---—}—12%):1)"1-

On the other hand, the monomial basis is in terms of the Schur polynomial basis of
Clzy, ..., 2y [1;.,(z; ' —=; ). This proves the theorem for energy level up to N. But this
works for any IV, so we are done.
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Boson-fermion correspondence, continued

Recall that

F=A7"V =0 Fn=EP Fn,

meZ meZ

where F,, are the (irreducible) Fock space representations of a and F is an irreducible
representation of CY.



We have already expressed the action of a; € a by elements in the Clifford algebra, via

ai = Y, . Yrbs, written in normal ordering, by 1,4 for s > 0 and —3, for s < 0.

Our preliminary question is whether we can express the ; and v} in terms of the a;. This is
certainly not possible, as the a; preserve the F;,, while the v; do not! However, we have other
natural operators, namely z, z~! which are “shift” operators shifting the highest weight vectors
Fm D ¥y — Uypy1 € Frt1. Our objective now is thus to define an actionof z: ¥, — ¥, 14,
commuting with all a; for i # 0. Indeed, excluding a,, all of the F},, are isomorphic as a-modules,
and z, z~! are the operators inducing this isomorphism.

Question: Express v;, ¥ in terms of z and a; for i € Z.

/ Remark 71.

Since ¥,, = v_m A V_m+1 A ..., the action of z is completely determined and well-defined.

Let’s collect some facts we know about these operators.

[as, ¥i] = Yiv;j.
[aia¢;] == :-}-j'
/ Remark 72.

This can be seen by the action of a; + 2 as an abelian Lie algebra.

/ Lemma 73.
The maps v¢; : Fy,, — F, 41 are uniquely determined by:

VUt1 = V1Y, and ¥, ¥, = 0 forr > —m.
[ais ¥;] = Vit

Proof.

Let’s first give an example of how this works. The operator ¢ _,,_; is already defined on ¥, the
highest weight vector. First let us note that

¢—m(a—1\IIm) = a—lw—m\Ilm - [a—lvw—m]\]?ma
=0- ¢—m—1\1lma
= —WUni1.

Similarly, we can determine ; on any monomial of strictly negative terms (i.e. all i; > 0)

a_il---a_ir‘llm,forj—il—---—z'r:—m—l.



Now if we want to determine say, ¥_,,_2¥,,, we see that it will be something proportional to
a_1¥.,+1, and we can find this coefficient by applying a; to both sides: we have

Yom2Vm =ka_ 1V,
al@bfme‘IIm = k‘I’erl,

Although this proves that the maps are uniquely determined, it doesn’t give any explicit
formulas! Now we want to get explicit formulas.
/ Definition 74.

Let us write the formal generating series

Ylu)i= ) g, @)= gju

JEZ JEZ

These satisfy commutator relations
[ais p(w)] = u'p(u), [ai, 9" (w)] = —u'p* (w).

Idea: We want to write ¢(u) = I'(u, a;)icz. Suppose all the a; are commutative and we replace
a; with i52— (the motivation is that [a;, aj] = id;+ j—0, Which essentially acts by i52—). Then
[afia _] = %- So

0
aail"(u,ai)— ; I'(u,a;),

which has a candidate solution

I(u,a;) = f(w) exp() u),

i£0
which is great if the a; commute, but not well defined if the a; do not commute.
Instead, let’s consider
@ii) . iy
exp (ZTU, ) exp <Z iu ),
1<0 >0

which is a well-defined operator on F,,((u)) for any Fock space F,,. (This is indeed Laurent
series because only finitely many terms in the right sum act nonzero.)

So from the previous “highly incorrect” considerations, we constructed a well-defined operator!

/ Theorem 75.



T'(u) = u"zexp (Z —%ui> - exp <Z %u_i) = ¢(u),

>0

T*(u) =u "z texp <Z %ul) - exp (Z —%u_i) =" (u).

1>0

Proof.

The proof is fairly easy; we only need to check the relations [a;, ¥ (u)] = u'y(u) and

[ai, ¥*(u)] = —u'y*(u), and that T'(u)¥,,, = u™ 1 ¥,, 1 + smaller order terms. Let’'s do the
commutator relations first. We need to check three separate cases: 7 = 0,7 < 0, and ¢ > 0.
For i = 0, the two exponentials commute, but the z*! doesn’t commute. But using that

lao, 2] = z, we find that [a, I'(u)] = I'(u) (and similarly for I'*(u)).

Fori < 0, the u™ "z term commutes, the first exponential commutes, but the last exponential
doesn’t; however, we already checked that [a;, —| acts by %.

The same thing occurs for i > 0.

For the action on ¥,,, clearly u™z + ¥, = «™"1¥,,. 1, while the second exponential acts by
identity and the first exponential only contains positive powers of u, hence

L(w) ¥ = ™ W11 + u™2C[[u]] Fni1. Now by the lemma and explicitly checking the
relations, we can verify the above expressions for ¢ and *.
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Boson-fermion correspondence and Jacobi-Trudy(-Giambelli)
identities

Recall that we have F = @
following picture in mind:

F,,, decomposition into Fock spaces. It's helpful to keep the

meZ




Each Fock space F,, is generated by the highest vector ¥,,, via the a_,, for n > 0. The a~
move the vectors upwards. This module is cyclic over a_, and cocyclic with respect to a
(everything can be taken to ¥,, by a-( elements). The fermion space is direct sum of such
things, and is graded with respect to energy. Now the height of an element in this picture is just
its degree with respect to energy, and the vertices belong to some parabola. Each Fock space
is an a-module, and there is an action of ¢(u) moving vectors clockwise, while ¥(u)* moves
things counterclockwise.

Now we have the operator ¢(u) = > ¥,u" and is uniquely determined by the property that
Vm1¥m = ¥,py1 and Yy, = 0 for N > —m — 1, and the property that [a;, ¥(u)] = u'yp(u).
These two properties allow you to uniquely determine the action of ¥(u) between any two
adjacent Fock spaces. First you determine all of the 1 going to the highest vector, and then you
use the properties to go down in the target Fock space. So these are uniquely determined.

/ Theorem 76.

We have the following formulas. The notation u* denotes the action by u™ on Fy,. The operator z
is the shift operator F,,, — Fp,41.

Y() = ueD ()T (w); T (u) = exp (Z “7;” u)

P (u) = 2z 'u 7" (w)T (u); T*(u) = exp (— Z don un>,

:= Example 77.

Consider ¥(u) : F-1 — Fy <> S. Let us consider the action of ¢(u) - ¥_;. Well first, I, (u) acts by
identity because each of the a~¢ act trivially. Next, we have action of I'_ (u). Since z commutes

with all a~g, we apply 2% 1 = ¥ and u* = «? = 1 on this space, so

P(u) : U_q —exp (Z a7_zn u") Uy.

n>0

On the other hand, we know that ¥(u) = ) ¥_,u", so the action is directly computed. Let
v:i=W_; =v1 Avg Avg A....Then



PY(u)_  =vgAv+u-v_ i Av+ud-v_gAv+....

Now recall that in the identification Fj; <> S, ¥ <+ 1 and a_,, <> p,, the power sum. Furthermore,
the monomials correspond to Schur polynomials. In particular, the monomials above (

v_, AN v <> h,). So by comparing the actions of the exponential of the sum of a_,, (converting

a_, <> p,) with the directly computed action of ¢)(u)¥ _; viav_,, A — <> h,, the conclusion is that

exp ( &u”) =1+ E h,u™ = h(u) € S.
n
n>0

n>0

/ Remark 78.

In fact we’ve already seen this; taking the derivative of both sides, we get something that
indeed we’ve before.

Now if we apply ¢*(u) : F1 — Fy, then
P*(u) ¥y =TI (u) Y.

On the other hand, ¢*(u) = ) ¥ u™", and each ¥} works by deleting successive entries from
U =v_1 AvgAvi A....So*(u)¥; is a sum of things corresponding to a one-column diagram
(times some appropriate power of u, up to sign), hence

I (u) < e(u) =1+ ) (—1)"e,u" €.

Goal

Our goal is to use I'.; (u) to express any Schur polynomial s, in the power sums p1, pa, . . ..
Under the identification S «+» Fj, the Schur polynomial sy for A= (A1 > X2 > --- > A, > 0)
corresponds to the monomial

SA VA NVt 1 AN AV tm—1 AUm A ...
=P A\ a1 Y atm1P

where ¥_,, € F_,,. This is the coefficient of u}'u)* - - - u ™ in h(u1) - - - (tm) ¥ .
Now

P(ug) - P(um) ¥ = uy%uyt -, ™ (ug) Ty (ug )P (ug)T o (ug) -+ T ()T () ¥ € Fy.
However, these terms don’t really commute... so we want all ' ;. on the right.

Observation.



a_, a,
E , u”, — E —u | = scalar operator.

n>0 n n>0 n

This is because this commutator is just an infinite sum of commutators [a_,, a,] which is just a
scalar.

Additionally, note that [z, a¢] = 2

/ Lemma 79.

Suppose [4, B] = C, [C, A] = [C, B] = 0. Then ee? = eCeBe4.

Proof.
First we note that A*B = BA* + nCA™!. Then we note that

A"B* =31 (’;) (’;) C'BH1am
=0

Now we have that

A"BF 1 llC'BFiA lk' A
elef = = = 2w T Z Z ;7:

/ Corollary 80.

Applying the previous lemma to the I', we find that

D)l (u) =T (us)T: (u) - exp (— > (“’—)) T ()l un)- (1 2),

n>0 v\ U1 U1

Proof.
Just note that the exponential is the logarithm power series, also that [a,,a_,] = n.

/ Proposition 81.

sy is the coefficient of u}* - - - udr in

[l (35110 2)

n>0



Proof.
We use the corollary to swap all of the ', to the right, which gives us the product of I'_(u;), but
with the extra factor of 1 — —Z.

2

O
Now recall that exp (3, 2=uf') = h(u;), while [;_;(1 — - is the Vandermonde determinant
(up to a monomial factor). Therefore the above expression equals

[T A(uws) - uy ™ ™2 det ((ai]- = u?‘i)g’fj:l). From this, we obtain:

¢ Theorem 82 (1st Jacobi-Trudy identity).

h)\] h)\1+1 h)\1+2 ©oo0 h)\rf‘m—].
m h)\z—l h)\2 h)\2+1 000 h)\z+m—2
sy = det ((hwfi)i’jzl) — det
Ry—mi1 Pr,—miz Pa,-mi3s oo Py,

/ Exercise 83.

You can similarly express sy as a determinant of the elementary symmetric functions (using the e;
instead of the h;) as well. The only difference is you transpose the Young diagram. The proof is the
same, but you replace ¥ by ¢*.
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(untwisted) Affine Kac-Moody Lie algebras

Let us start with any simple Lie algebra g over C, e.g. sl,, so, for n > 5, sp,,, forn > 4,
exceptional ones, etc.

Fix an invariant inner product (,) on g satisfying (z, [y, 2]) = ([z, 9], 2); since g is simple, this
inner product is unique up to scalar.

Now consider the loop algebra g[z, 2~ !]. It's called loop because it's “equal” to T. LG, where
LG = {analytic maps S — G} (not precisely; we should really take some completion of g[z, 2!
, but it's a dense subspace inside of T. LG, which is enough for our purposes). This algebra

alz, 27! is graded: the nth graded component is gt", hence the grading is given by operator 29..
Hence g[z,27!] = @,z 92" is a graded Lie algebra, with [g2", gz™] = gz"™™.

As usual, we care about central extensions of this Lie algebra.

Central extensions of g[z, 2]



Recall that central extensions are classified by H2(g[z, z!]), so we want to compute this
cohomology group. We have the Chevalley complex

C*(glz,271) = A*(glz,27']")

and it carries an action of g[z, 2~!] which acts trivially on cohomology. In particular, g acts trivially

on the cohomology.

/ Proposition 84.

Any cohomology class from H?2(g|z, z71]) is represented by a cocycle of the form > mtn YmaWmn

where Ymn = —Vnm € C and wyn(x2F, y2') = dm—rbn-i(x, ), i.c., a g-invariant cocycle.

Proof.

First, g ~ H? trivially iff we can lift any w € H? to some g-invariant cocycle in C2. Meanwhile,
we have an embedding g[z, 2 1]* — AZ%g[z, 27 !]*, so the coboundaries are precisely a copy of
alz,271*. But g[z, 27 !]* = @, g contains no g-invariants, hence lifting is unique (there are no
Ext between this module and the trivial module). It follows that g-invariant cocycles precisely
have the above form.

This still consists of infinitely many parameters. We will whittle it down.

/ Proposition 85.

We have Yn,m+p =F Ym.,p+n + Ypnt+m = 0.

Proof.
We have

0 = dw(z12", 222", x32"),

n+m m+p

= w([z1, £2]2" ™, 232P) — w([z1, 23]2" P, 222™) + w([za, 23] 2P, 212"),
= 7n+m,p<[w1a :132], CB3> - 7n+p,m<[m1a 1173]’ J}2> + 7m+p,n<[w27 x3]7 2131>.

Since (, )s are totally antisymmetric, all of the (,) equal the same constant up to sign(note that
([x1, 23], z2) = (21, [X3, T2]) = — (21, [T2, 23]) = —([21, 22], Z3)), hence the above expression is
equal to some constant times v,n+m + Ymp+n + Ynm+p, aNd choosing the constant to be
nonzero we have that this is zero.

/ Corollary 86.

Yn,—n = ny1,-1 = n7y and Y, = 0 otherwise. In particular, dim H?(g[z, 27 1]) = 1.



Proof.

We have v s—n + Ym,s—m = Yn+m,s—n—m = 7o,s = 0 for all s. By induction,

—(8 —n)V1,5-1 = Vns-n =N Y1,5-1 = (§—n)Y15-1 = —NY1,5-1 — $-715-1 =0, hence
~1,s—1 = 0 for all s # 0. This implies the result.

We finally reach our most important object in this course.

/ Definition 87 (affine Kac-Moody Lie algebra).
Any central extension of gz, z~!] has the form
0= Ce—=g—glz27] =0, [22%y2"]5=[2,4s2" ™" + 71 nimo - (2,9) - c.
Equivalently,
[2(2), y(2)]5 = [2(2),y(2)]g + Res.—o(x(2), dy(2)) - c.

Therefore, we define the (untwisted) affine Kac-Moody Lie algebra g associated to a simple

(finite-dimensional) Lie algebra g to be the unique (up to rescaling) nontrivial central extension of

the loop space g[z, 27 1].

:= Example 88.

Let g = sl,. We may consider 5/[\2 as a bigraded Lie algebra, with one grading coming from 20,, and

the other grading coming from ad h, as illustrated below. Then sly is generated by
h,c,e, fz, f,ez~1. Why is that?

Anything to the right can be generated by e and fz. For example, hz = [e, fz] and fz2 = [fz, hz].
Anything to the left can be generated by f and ez~! by a similar procedure.

Note that there are two copies of sl, here which indeed generate the whole thing, illustrated in



brown and orange. The relations are very similar to the relations coming from finite-dimensional
Lie algebras.

This is very similar to the case of semisimple Lie algebras: we have the Cartan subalgebra in
purple, n_, n, illustrated in green and red, and we can define all the usual stuff such as roots,

simple roots, Chevalley generators, etc., which we will discuss next time.
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Structure and (some) representations of sl

Recall the construction from Definition 85 (affine Kac-Moody Lie algebra): to a complex
semisimple Lie algebra g, we can assign a Z-graded Lie algebra g (called the affine Kac-Moody
Lie algebra), which is a central extension of the Loop algebra g[z, 271]:

ﬁ =Cco® g[za Zﬁl]a [C, _] = 07 [w(z)»y(z)]a = [w(z%y(z)]g[z,z*} + Resz:O <$(Z), dy(z)>c‘

In fact, the inner product (, ) is defined only up to a scalar; there are two ways to rectify this,
either defining it to be the Killing form on g, or by normalizing (h;, h;) = 2 (i.e., the square of any
h of a principal sla-triple is 2).

Question: What is Derg?

/ Remark 89.

For a finite-dimensional simple Lie algebra, Der g = ad g since Der g/adg = H'(g,g) = 0

(because the adjoint representation is a nontrivial irreducible representation, recall from Sep 11).

So we might want to study Derg/adg = H'(g,g). We have

Derg /adg=H'(§,3) .« gC3.
g /adyg (g,89) v 9gCy

Lie algebra ideal trivially

So any class in Derg/ad g is represented by a g-invariant derivation. Moreover, Der§ is Z-
graded by [20,, —], since § is graded.

/ Proposition 90.

Derg/adg =W = C[z,271]0,.



Proof.
Suppose D € Derg is g-invariant, with deg D = n homogeneous. Then for z € g,

D(zz") = a,xz"™, since Dis g — invariant,

D([z2",y2"]) = [D(z2"),yz"] + [zz", D(y2")],
= e[z, yl2 = (ar i) [z, )T Yy e,
= Orts = Qyp + o

This means that any derivation in Der g is uniquely determined up to a constant, and
furthermore is proportional to z"*19,.

/ Definition 91 (extended affine Kac-Moody Lie algebra).

It is sometimes useful to work with a somewhat bigger algebra, the extended affine Kac-Moody

algebra g, defined by
0—-9—9— C{z0.} — 0.

We will often denote this extra element by d := z0,.

‘= Example 92.

Let’s examine g[\z As we have already seen in Oct 11, we have the Cartan decomposition

gg:ﬁ—i— ®6@ﬁ—7

b = Span{h[0], c},
n; = Cel0] @ 2sl3[2],
n_ = Cf[0] @ 2 'sla[2 7).

Soslyisa bi-graded algebra, with gradings given by 20, and ad h. Recall the picture from Oct 11:




Then we have a principal grading given by 220, + 5ad h, which gives a grading by the diagonals
from top left to bottom right.

Generators of sl,

Consider e; = e[0], eg = f[1], f1 = f[0], fo = e[—1], h1 = h[0], and hy = ¢ — h[0]. Then

{e1, f1,h1} and {eo, fo, ho} form two sl,-triples. (You can easily check the commutator relations.)
Now note that [e1, fo] = 0 = [eo, f1]-

We also have analogues of Serre relations, easily seen by looking at the picture above (each
commutator pushes it one step up or one step down, but there are only three levels):

le1, [e1, [e1, eq]]] =
e, [€o, [0, e1]]] =

We do have some for fs, but in fact, we don’t need other relations and obtain sl, already
through these few relations (though the proof of this will be postponed).

Invariant symmetric bilinear form on sl,

/2 Definition 93.
Let us define the invariant symmetric bilinear form on 5[\2:

(¢, 0) = 0 (therefore the form is degenerate)
elr], fl=r]) =1
(hlr], h[=r]) = =.

Question: What is the Casimir element here?

The problem is that this algebra is infinite-dimensional, so if you try to write the Casimir
element, it will be an infinite sum, hence not an element of the universal enveloping algebra.
Darn!

What we want to write is 3, e[r] f[~7] + f[rle[~7] + % h[r]h[—r]. But since we only consider
category-O representations, n.. acts locally nilpotently, so anything with positive terms on the
right will act nilpotently.

While we cannot make this element a finite sum, we can make it well-defined on every
category-O representation, and hence can view it as an element of the completion

—

O> M UGh) = lim u(gg)/znstz[z].

oon



So our goal is to commute the terms so the positive terms are on the right. We obtain

5= <e[0] 710 + £10el0] + %h[OP) 2% <e[—r] Flr] + el—rlelr] + %h[—r]h[r]).

r>0

The problem: S is not central!
The good news: [S, z[r]] = 0 modulo linear terms.
/ Proposition 94.

[S,z[r]] = —2(c + 2)r - z[r].

The proof is deferred to next class, since we ran out of time!

From this, it will follow that Der sl5 is generated by inner derivations and the Witt algebra

W = Clz, z71]. It will follow that we can recognize 20, = [ ] (after localizing), which will

s _ _
—2(c+2)?
turn outer derivations to inner ones as well.

The true Casimir will be S + 2(c + 2) - 28, € U(s[,), and this does indeed enjoy all of the
properties of a true Casimir element.
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Structure and representations of sl,
Let us recall what we know about this affine Kac-Moody algebra. It is defined by

0 — Cc — sly — sly[z, 271 = 0.

In particular there is a basis given by ¢ and elr|, f[r], h[r] for r € Z. We have the relations

e, =] = 0 = [e[r], e[s]] = [£[r], f]s]]
[R[r], h[s]] = 2rd,4s—oc
lelr], f[s]] = h[r + 5]
[h[r], e[s]] = 2e[r + s]
[Alr], flsl] = —2f[r + s]

We have the Cartan decomposition slh=7_ @ E ®n,, where

A =Cf0] @z tsla[z 7Y,

b = Span{h[0], c},
n; = Ce[0] & 2sls[z2].



Let’s distinguish some generators which play the role of Chevalley generators here. The natural
choice is ey, eq to generate 1, and f1, f, to generate n_, along with hq, h to generate E We
define e; = e[0], fi = f[0], hy = [e1, f1] = R[0], and ey = f[1], fo = e[-1], and

ho = [eq, fo] = ¢ — h|[0]. Each triple (e;, f;, h;) generate an sl,-triple.

In this way, we can regard sl as a Lie algebra constructed from a Cartan matrix, just as in the
finite-dimensional case. For a;; € Z with i, 5 € {0, 1}, let

[hi, €5] = aije;
[hi, f3] = —ay;f;
[ei, f3] = dijhi

So the Cartan matrix in our case is

A = (aij) = (_22 _22>,

which is a degenerate Cartan matrix (this is in stark contrast to the finite-dimensional case,
where the Cartan matrix is symmetrizable and the symmetrization is positive definite!). But
we can still determine a Lie algebra from a Cartan matrix by imposing the above relations
and the Serre relations:

(ade;)' ™" -e; = 0= (ad f;)' 7 - f;.

As we have already seen, these relations already hold for E[;! Fori +# j, then1 —a;; = 3,
and this is indeed the case. A bit later, we will see that EG is indeed determined by these
relations.

This sort of affine Kac-Moody Lie algebra generalizes. For any simple g, we can make the Lie
algebra g := Cc @ g[z, 2 1]. We want to split the algebra

@2z lgo (g Co) @ 2g D 29D -

into a Cartan decomposition.

/ Definition 95 (Cartan decomposition of affine Kac-Moody Lie algebra).

Let g be a simple finite-dimensional Lie algebra. The Cartan decomposition of g is as follows. We
define

h:=b&Cec,
n,=n, @ zg[z,
no=n_z gz,

where we view h,n,,n_ Cg-1C g[z, 2],



If we do this sort of Cartan decomposition, we want to determine the Chevalley generators, i.e.
positive simple roots. We define the simple roots to be e; := e,,[0] € n;. C g. We can also define
eo = z - fo Where 6 is the maximal root; this is one extra root which lives in z - g and together
with the simple roots, generates all of ;.. For example, in g = sl,, we have

0 0 271
eo =2 fo= o , While f, = . . This is a Lie algebra which corresponds

: 0 \ 0 )

to the extended system of simple roots (i.e., all of the simple roots, combined with negative of
the maximal root (alternatively, the lowest root)). You can still regard this as a system of simple
roots! Then after that, we can write the Cartan matrix and the corresponding relations.

Category O for g

Let d : g — g be the derivation given by 20,.

/ Definition 96 (category-O for affine Kac-Moody Lie algebra).
A g-module M is in category O if:

it is d-graded (i.e. extends to g-module).

1, acts locally nilpotently, i.e., for all v € M, there exists N such thate; ----- e; v =0.
b acts semisimply, i.e. M = @“ea* M, such that for all b € handv € M, then hv = p(h)v.

it is finitely generated, which implies (see Proposition below) that the principal grading on M

is upper bounded, and the graded components are finite-dimensional.

/ Remark 97.

There are many versions of category O if we modify (4), but we’ll work with essentially the

“smallest” version, so that our category is not too big.

/ Definition 98 (principal grading on g).

The principal grading on g is given by ad h := %ad h + (m + 1)ad d, where [/l{, e;] = e;, and m is
the height of the maximal root € (e.g., if @ = > A n;a;, then m := > n;). (Here h is the element in
h such that [h, e;] = 2e;.)

/ Proposition 99.



Let M € O. Then M = @,,., M,,, where Rl um, = n - id. Furthermore, there exists N € Z such that
foralln > N, M, = 0.

Proof.
Let vy,...,v; be the generators of M. Then there exists N; such thate, --- €iy, V1 =0. Suppose
N, is the biggest degree of v; with respect to h.Then N = N, + N, satisfies this condition.

M = @ M,

Note that ¢|y, = & - id.
Roughly speaking, O = @, Ok, where O, is the category of representations of the level k.

For finite-dimensional g, category O enjoys some nice properties:

all objects have finite length.

it contains finite-dimensional g-modules.

Unfortunately, both of these properties fail for g. The second property has a simple
example: set k = 0, then consider the evaluation representation g[z, z~!] — g by sending
z—7? € C, specializing z to some complex number (say 1). Then g — End (V') for some
finite-dimensional V, which fails the condition that i, acts locally nilpotently. As a concrete
example, consider g = sl and V = C? the tautological representation. Then

... fefefefefe-v £ 0solong as ev # 0.

The point of all this is that finite-dimensional modules are not the correct objects to study.
Instead it'll be something called integrable modules.

/ Definition 100 (integrable module).

A g-module in category O is integrable if it is integrable with respect to all copies of sls generated
by (e, fi, hi) (i.e., fi act locally nilpotently). (Recall that a representation of s[5 is integrable if it
is a (possibly infinite) direct sum of finite-dimensional sly-modules; however, note that these copies
of 5[y intertwine in such a way that as a g-module, the representation does not decompose as a
direct sum of finite-dimensional g-modules.)

:= Example 101.

Forg = sy, we are looking for integrable quotient of a Verma module



M(\ k) = IndgGaﬁ Car  =UGR)vas.
H+_/
clcy,=kid, b3hlc, ,=A(h)

Now we want this to have an integrable quotient with respect to both generating s[,-triples,
(eq, fo, ho) and (eq, f1, h1). The latter set is the “usual” set and the condition that it’s integrable
with respect to this set implies that A € Z~; the integrability on the other set shows that
hovyr = (B — A)vyg, 50k — X € Zy.
e

In particular, there is a unique integrable module of level 0 (namely the trivial module), and two

irreducible integrable modules of level 1, corresponding to A = 0, 1.
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Sugawara construction for 5/[\2 and applications to
category O

Invariant forms on g[z, 2]

Let (,) be an invariant scalar product on g. Then we can extend in the obvious way to an
invariant scalar product (z(z),y(z)) € C[z, 2~ !]. Then we can multiply by any differential form
F(z)dz, and we obtain a form

2(2),y(2) ~ Res,—o(@(2), y(2)) F(2) dz € C.

So this suggests the construction of some element in the universal enveloping algebra, i.e. the
“Casimir” element in U(g[z, 2~ ]).

When F(z) = 271, then (z[r],y[s]),, = 6,4s—n(z,y). For any basis {z,} of g and {z*} the dual
basis, the form (, ),, suggests the element

E Z zo[r]z®]s],

r+s=n «o

which is not an element of the universal enveloping algebra, but is an element of

U(g[z, 271]) = limoor v U(g[z, 271]) /U(g[2, 271]) 2N g, and has a well-defined action on category O.

/’ Lemma 102.

Do Talrlz®[s] = oo 2%[s]zalr].



Proof.
The difference is an element of g[r + s| which commutes with g[0]. But since g is simple, there
are no such elements.

This implies that we can write

Spi= D, D mlretlsl+ Y D etlslealrl.

r+s=n, s>0 « r+s=n, s<0 «

There is one huge problem: this element is not central.

:= Example 103.

Let g = sl,. We’ll show that S as constructed is not central. Then

S0 = cl0L10] + S0}l0] + Fh(07 + 23 (el-rlfi] + flrllr] + FhL-rInf]).

>0
We can check commutativity on the generators of sls. First, [So, 2[0]] = 0, so that is not a problem.
But
[So, h[1]] = — 2e[1]f[1] + 2¢[0] f[1] + ef[1]e[0] — 2[0]e[1]
+2) " —2e[—r + 1]f[r] + 2e[—r]flr + 1] + 2f[—r + 1]e[r] — 2f[—r]e[r + 1]
>0

2(—2e[0] [1]+27[0]e[1])
— — 4h[1].

So [So, h[1]] = —4h[1], which is nonzero. We also know that [So, z[m]] € sl2[z, 271], i.e.
ad Sy : sly[z,271] — sly[z, 271 is an s:\[g-invariant derivation. But we already checked this before
— then it must come the Witt algebra, and since it is level 0, it must be proportional to z0,.

/ Proposition 104.

[So, —] = —420,. Similarly, we can define [S,,, —] = —42"19,.

/ Corollary 105.

The elements {S,, | n € Z} generates a central extension of the Witt algebra W C U(g[z, 271]).
(Note that the center of the U(g[z, z~1]) is trivial, although we have not showed this before.) This
implies that [[S,,, S,,], —| generates a copy of Vir, the Virasoro algebra, since [S,,, S,,] = Spim+7

and thus gives us the central extension.



For sl we have [So, h[1]] = —2(c + 2)h[1].

/ Proposition 106.

[So, —] = —2(c + 2)20, =: —2(c + 2)[d, —|. More generally, [S,,, —] = —2(c + 2)z"*+14.,.

—
—

Therefore we have an embedding Vir — U(slz)].

/ Remark 107.

The level ¢ = —2 is special, and called critical. This is because all S,, become central in

—

U(sT)/(c+2).

¢ Theorem 108 (Casimir elememt).

—

C = So + 2(c + 2)d € U(sly) is central. We call this the Casimir element.

Category O

/ Definition 109 (Verma module).

Let k € C. Then Oy > M(A, k) the Verma module generated by v,  subject to conditions

NV Nk = 0, h[O]’U)\’k = )\’U)\’k, and CUNE = k’l))\7k.

2 Definition 110 (highest weight module).

V is a highest weight module of level k if V = M(\, k)/— for some A.

/ Proposition 111.

Any module M from Oy, has a finite filtration M D My D --- D My such that M;/M;, is highest

weight for each .

/ Theorem 112.



LetQ 2 k < —2or k ¢ Q. Then any object of Oy, has finite length.

Proof.

It's sufficient to do this for Verma modules M (), k). Then we just need to show that there are
finitely many singular vectors. The reason is that if there is a singular vector, then the
eigenvalue for Casimir is the highest weight.

/ Lemma 113.

C|m(rk) is constant.

Then when you go down the Verma module, the eigenvalue of the second term 2(c + 2)d in the
Casimir element increases, while if we have a singular vector then the value of the first term S,
is always just the value of the Casimir on the highest vector for s[,. So these are bounded
below and there are finitely many weight spaces. We'll finish the proof next class.

Oct 20

Generalities about category O (in the infinite-dimensional
setting)

/ Theorem 114.

Let C> k< —2(wherea <b <= b—a € Q.(). Modules from O, have finite length.

Proof. First, it's sufficient to show that Verma modules M (), k) have finite length; this is
because every module from category O can be filtered in such a way that all subsequent
quotients are highest weight modules (i.e., quotients of Verma modules).

Next, suppose that some Verma module M (), k) is infinite length, i.e. that for all NV, there exists
a chain of strict inclusions M (A, k) 2 M; D M, O --- 2 My. Consider the weight decomposition
MM\ E) =UM_) - vy we define

M\ K)ym = {ve M(\E) | h[0Jv=pv, dv=muv}.

To do this, we need to make some choice, to determine the action dv, ;. In this case we declare
dv) ;, = 0. From this we see that

d (H e[ri]f[si]h[pi]vA,k) = (ri+si+p)(-),



and thus that the weight spaces are finite-dimensional. So the sequence of inclusions also
induces a sequence of inclusions on each weight space.

Now consider the quotients M;/M;.1, and choose some highest vector (not necessarily
generating the quotient) v; annihilated by 1., which always exists. Lift this v; to some

0; € M(A, k). All of the ¢; are linearly independent. This means that there exist infinitely many
pairs (p, m) such that (M;/M;1),m > vi where n v; = 0. But let us consider the possible
values for p,m. First, m < 0,and p € A+ 2Z. If m = 0then p € A — 2Z>,.

Now we need the following lemma. Let C = S, + 2(k + 2)d be the Casimir element. On the
Verma module M (), k), it acts by the scalar A(’\;z) . The proof is that it acts by this scalar on the
highest vector v, j, and it commutes with everything with Z/(n_) which also generates

everything in M (X, k).

Next, we also need another lemma. Consider the action of C- v; of some highest vector in a

quotient. Then CA*UZ- = (M +2(k+ 2)m) v;. The proof is postponed to next time.

These two prove the theorem for rational k. O

General setting

Now let’s discuss category O in general. Let £ be a (possibly infinite-dimensional) Lie algebra
which is Z-graded, i.e. £ = @,,c; Lr, such that L, is abelian, and dim £,, < oo for all n. This
applies to all Lie algebras we have seen so far, including the Heisenberg algebra a, the Virasoro
algebra Vir, and the Kac-Moody algebras g. In this general situation we can always define a
Verma module M(\) := U(L<o)vx corresponding to any character A € L£;. This module is still Z
-graded (only negative/nonpositive components), and the dimensions of the graded
components are finite. So we can do the usual business with category O.

Let’s describe all simples in O. In the usual case (semisimple Lie algebras), a simple module is
a quotient of a Verma module, and there is a minimal quotient. Here, any proper submodule of
M ()\) is contained in M(\) <o, the strictly negative part of M(\), hence the sum of all proper
submodules is still a proper submodule (contained in M () <o).

/ Proposition 115.

There exists a unique maximal proper submodule N(A) C M (). Thus, all simple modules in O are
of the form M(A)/N(X) =: L()).

The main problem is to find the Poincare series/characters of L()\) with respect to £, and d.
What we expect is that 1) for g, for integrable L(\) there will be some analogue of Weyl



character formula, such that Jacobi and Macdonald identities are some particular cases, and 2)
(we will continue with this next time) something even more interesting for Vir. The problem with
Vir is that it is not a Kac-Moody algebra, and it is not determined by a Cartan matrix, so much
less is known here. But what we have seen is that any affine Kac-Moody algebra contains some
Vir, so representations of it arise everywhere, making it “universal” in some sense. So it is
really important. So we cannot say “integrable” for Vir because there is no Lie group, but we
can distinguish some class of modules (called minimal Virasoro modules) which share many
properties with integrable modules.

Oct 23

—~

Category-O representations of s,

In fact, most of what we say today is true more generally for g, but it's easier to first just
consider the case of g = sl,.

First, we need to finish the finite-length property for category-O, modules for

{keQ, k+2<0}or{keC\Q} (recall Theorem 112). We reduced this to the study of
Verma modules M (A, k). What we are checking is that there are finitely many possibilities for
the highest vector in M (), k). The highest vector has to satisfy the property that its eigenvalue
under the Casimir is the same. So there exists a highest vector of weight (1, —n) (where p is
the eigenvalue of h[0] and —n is the eigenvalue of d) in some subquotient of M, for u = A + 2m
and m € Z and n € Z-,. We were checking that there were finitely many possibilities for (x, —n)
to have the same eigenvalue under the Casimir. Now the eigenvalue of the Casimir
So+2(k+2)dis ﬁ@ while the eigenvalue on the highest vector (of weight (u, —n)) is

M — 2(k + 2)n. Setting these equal and writing 4 = A + 2m, we have

A+ 222 = A% + 2)\ + 4mA + 4m? + 2m — 4(k + 2)n,
— 0 = 4m\ + 4m?® + 2m — 4(k + 2)n.

Here X and k + 2 are fixed. So we have two cases: first, in the m — n plane, the equation is a
parabola, and we have finitely many integer points with n > 0. The second case is if k + 2 € Q.
Let's split C = Q @ Q" as vector spaces (yes... this is weird). Then k + 2 = k; + ks, and

A= A1 + Ao, with k1, A1 € Q and kg, A2 € Q*. Then we find that

4m)\2 = 4nk2.

Since both of these are nonzero, we deduce that m should be proportional to n. But then the
line m = cn for some ¢, intersects the parabola at finitely many points (no matter which way the
parabola is facing). So either way, we see that there are only finitely many possibilities.

Characters



Suppose g is a finite-dimensional semisimple Lie algebra, and V is a finite-dimensional g-
module. Recall that if V is finite-dimensional, then V is integrable, i.e. it integrates to a G-
representation, where G is the connected, simply-connected Lie group corresponding to g. Let
m: G — GL(V) be this homomorphism. Then we define chy(g) := Try(n(g)). This has the usual
property that it's conjugation-invariant: chy(g) = chy(hgh™!) for all h, g € G. So this defines a
function on conjugacy classes of G. On the other hand, almost all conjugacy classes (i.e.,
complement of union of these conjugacy classes forms a set of measure 0, or alternatively
viewed as an algebraic group, the complement is a proper Zariski-closed subset) have a
representative in the maximal torus (if G is compact, it's true for every conjugacy class). In fact,
the representatives in the maximal torus form a single W-orbit, where W = N¢g(T)/T is the
Weyl group. So this means that the character is uniquely determined by its values on the
maximal torus.

/ Proposition 116.

chy(g) is unique determined by the values chy(t) for t € T, and furthermore chy |7 € C[T]W.

We want something similar in the infinite-dimensional case. The question is what to do,
because we don’t have the Lie group, so we have an issue trying to define the character as a
trace of the element in the Lie group. The idea is that we still have a notion of a function on the
torus (though maybe not the whole “group”).

Let us return to the finite-dimensional case. Suppose that we have the decomposition
V = @ ey Vi, of V into h-eigenspaces, so that for h € b, we have h|y, = u(h) - id. Then
(essentially by definition), we have

/ Proposition 117.

chy(t) =D cp t" - dim V.

Let’s regard t* as a formal symbol, satisfying that t#* . ¢#2 = ¢#1th2,

This means that to determine the character, it suffices to understand the decomposition of V'
into h-weight spaces, which is indeed easy to generalize to the infinite-dimensional case.

Suppose
M=M,, dinM,<oo.

Then we can write down the character chj(t) as an infinite sum, but it will still be well-defined.



In particular, we can write down the character of a Verma module (in the finite-dimensional
case).

:= Example 118 (character of a Verma module).

Let g be a finite-dimensional semisimple Lie algebra and M = M () = U(g) Qo) CA be the
Verma module, where b = n @ h. Here, n acts on CA by 0, while h actson CAby A: h — C.
Then by PBW, this module is a free ¢(n_)-module generated by a highest-weight vector vy. So the

character is given by

PBW
char) (8) = ¢* - chy ) (8) = ¢* - chsn ) (t)-

To compute this, we just need to know the action of the torus on the space of generators (namely n_
)- Let A denote the positive roots. Recall that n_ = €, A, fa>and each f, gives rise to ¢~*. So

we get that

charn (8) = ¢* - chsn ) (8),
=t*-chg,, ci)();

= t/\ 0 H Ch(C[fa} (t),

acA L

1
= Il 7=

acA

Now, recall that Verma modules span the Grothendieck group of the category O, so we can compute
the characters of all of the modules as linear combinations of the characters of the Verma modules

(as computed here).

Now consider (possibly infinite-dimensional) Lie algebra £ with the usual assumptions: Z-
graded, so that £ = @,,.; L., and L, is abelian. Then we can define the character ch (¢, ¢) of
any graded £-module M such that M = @,,., M,, and M, = EB”eLS M, n, Lo acts semisimply,
and the joint-eigenspaces M, ,, are finite-dimensional. The variable ¢ comes from the “torus” £,
action (i.e. u), and the ¢ comes from the Z-grading (i.e. n). Thus we define:

/ Definition 119 (character).

Let £ and M be as above, i.e., L is Z-graded with Ly abelian, M is Z-graded and L acts

semisimply, with finite-dimensional joint-eigenspaces. Then we define

chy(t,q) =Y (dimM,,)-t*q".

nel
neL



In other words, to define this, we consider an extended Lie algebra

0—>£—>E—>Cd—>0,

where the adjoint action of d gives the Z-grading, and we consider £-modules (i.e., graded
modules over £). We have a bigger abelian algebra £, = Cd & Lo, and we decompose the
module with respect to the action of Lo, and require that the weight spaces of Lo (which are just
the joint-weight spaces of L) should be finite-dimensional.

:= Example 120.

Let g = Cc @ g[z, 27| be a nontrivial central extension. Let § = Cd @ §.

¢ Proposition 121.

Any category-O module M € O(§) has a well-defined character ch (¢, q).

Namely, let us define
M,,={ve M|h0v=p(h)vVh €h, dv= —nv}.

We’ll define the character by:

chy(t,q) =)  (dim My,y) - t#q"

Proof.

It’s sufficient to check this for Verma modules M (X) = U(§) ®uh+cercdtn,) CA. As a vector space
with an action of the extended Cartan algebra H = b + Cc + Cd, this is just Y (ﬁ,) - vy (Where k is
the eigenvalue of the central element c). We just need to show that the weight spaces in (n_) have
finite dimension. But this is indeed the case, since n_ is negatively graded with respect to some
linear combination of the multi-grading. (In other words, we c