
18.747 Fall 2023
Infinite-dimensional Lie algebras
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The professor for this course is Leonid Rybnikov. As always, all errors are my fault; please send
me any that you find!
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Our goal in this course is to study most important infinite dimensional Lie algebras and their
representations.

In the finite dim case, semisimple Lie algebras constitute the nicest and most important
examples. This is done by highest weight representations, category O, etc.

We are interested in infinite dimensional Lie algebras that behave similar to semisimple finite-
dim Lie algebras, exhibiting such behavior as highest weight, etc.

We are mostly interested in:

Our main references will be:

Cohomology of Lie algebras
Let g be a Lie algebra, M be a g-module.
In general, we work over C.

affine Kac-Moody Lie algebras
Virasoro algebra
Heisenberg algebra
etc.

Kac-Raina, Bombay Lectures on Highest Weight Representations of Infinite DImensional
Lie Algebras

Darij Grinberg‘s notes from 2012, taught by Pavel Etingof
Victor Kac, Infinite dimensional Lie algebras
the first chapter of D. B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras

https://books.google.com/books/about/Bombay_Lectures_on_Highest_Weight_Repres.html?id=0P23OB84eqUC
https://www.cip.ifi.lmu.de/~grinberg/algebra/etingof-lie.pdf
https://link.springer.com/book/10.1007/978-1-4757-1382-4
https://link.springer.com/book/10.1007/978-1-4684-8765-7


General g.

We have the similar Koszul complex

0 ← C ← U(g) ← U(g) ⊗ g ← U(g) ⊗ Λ2g ← ⋯,

and the differential maps

Using the Jacobian identity, we can see that this is a differential, hence this is a complex.
The associated graded of this complex is the above example (using symmetric algebras), which
is acyclic, hence this complex is acyclic. This implies the Chevalley complex.

Definition 1.

We define H ∙(g,M) = Ext∙U(g)(𝟙,M) as a graded vector space, where 𝟙 is the trivial g-module.:

Example 2.

Let g be an abelian Lie algebra, g ≅CN . How do we compute H ∙? We do this by taking projective
resolution of 𝟙 and taking Hom with M .
So we start with 0 ← 𝟙, then need a surjection from a free U(g)-module. Let’s take Sg, the
symmetric algebra. We end up with an exact sequence

0 ← 𝟙← Sg ← Sg ⊗ g ← Sg ⊗ Λ2g ← Sg ⊗ Λ3g ← ⋯,

this is called the Koszul complex. Now we must apply Hom(−,M) to this sequence. But

HomU(g)(Sg ⊗ Λkg,M) ≅M ⊗ Λkg∗ ≅HomC(Λkg,M).

So we get a complex

0 → M → HomC(g,M) → HomC(Λ2g,M) → ⋯

where if ω ∈ HomC(Λkg,M), then dω(y1, y2,… , yk+1) =∑(−1)i−1yiω(y1,… , ŷi,… , yk+1).

x⊗ y1 ∧⋯∧ yk ↦∑(−1)i−1xyi ⊗ y1 ∧⋯∧ ŷi ∧⋯∧ yk

+ ∑(−1)i+j−1x⊗ [yi, yj] ∧ y1 ∧… ŷi … ŷj … yk.

Corollary 3.

We have the following exact complex, known as the Chevalley complex, which computes
H ∙(g,M):

M → HomC(g,M) → HomC(Λ2g,M) → …



Meaning of H 0,H 1,H 2.

where if ω ∈ HomC(Λkg,M), then

dω(y1,… , yk+1) =∑(−1)i−1yiω(y1,… , ŷi,… , yk+1)

+ ∑
i<j

(−1)i+j−1ω([yi, yj], y1,… , ŷi,… , ŷj,… , yk+1).

Definition 4.

H ∙(g) = H ∙(g, 𝟙) with trivial coefficients.
It is computed by the Chevalley-Eilenberg complex

0 → C → g∗ → Λ2g∗ → Λ3g∗ → Λ4g∗ → ⋯.

:

Remark 5.

This has some topological meaning if g = TeG for some Lie group G. Since it’s a trivial
representation, the first sum in dω is zero, as it has the action of yi on it; thus the complex is
computed by the complex Λ∙g∗ with the differential given by the second sum in dω above. But
Λ∙g∗ = Ω(G)left-right, i.e. Left and right invariant differential forms on G, which are uniquely
determined by their values at the unit e ∈ G. This is a subcomplex of the deRham complex Ω(G). If
G is compact (over R), then we have a quasi-isomorphism Ω(G)left-right ⊂ Ω(G), hence
H ∙(G) = H ∙

dR(G).

H 0(g,M) = Homg(𝟙,M) = M g, the space of g-invariants in M. Therefore H 0(g) = C.
H 1(g,M) = Ext1(𝟙,M), so H 1(g) = Hom(g, 𝟙) = ker(g∗ → Λ2g∗) = (g/[g, g])∗.
Prop: H 2(g) are equivalent classes of central extensions 0 → C → g̃ → g → 0 where the
first map is the embedding of the central subalgebra. The proof: we just compare this with
the definition of H 2, which is ker(Λ2g∗ → Λ3g∗)/im(Λ1g∗ → Λ2g∗). Note that for any central
extension g̃ = g ⊕ Cc, the commutator for x, y ∈ g ⊂ g̃ Becomes [x, y]g̃ = [x, y]g + c ⋅ ω(x, y)

. Note that ω is clearly skew-symmetric (as the difference of two commutators) hence is in
Λ2g∗, and furthermore the Jacobi identity implies that it is in the kernel of Λ2g∗ → Λ3g∗.
Now the choice of splitting g̃ ≅g ⊕ Cc corresponds to some ν ∈ g∗, which changes ω by
dν = ν([x, y]): the choice of splitting in the short exact sequence 0 → Cc → g̃ → g is non-
canonical and determined up to scalar multiples of c, which are precisely determined by
maps g → Cc ≅C, which are just elements of g∗. (The coboundary condition is equivalent
to the adjustment being a true lift g → g̃.)



□

Methods of computing H ∙(g,M)

Proof.
Let x ∈ g, let its action be Lx. We have Lx = d ∘ ιx + ιx ∘ d, where ιx is substitution of x; this
follows from the formula for dω. Then for a cocycle ω, Lx(ω) = dιx(ω) which is a coboundary,
hence 0 in H ∙.

Sep 8
Comment on the homework.

Theorem 6.

The (Chevalley) complex C ∙(g,M) is a g-module where the g-action commutes with the
differential, hence d is a g-endomorphism. This implies that g acts on H ∙(g,M), and in fact this
action is trivial.

Corollary 7.

Suppose g is inner graded, i.e. giving by adx for x ∈ g. Then

C ∙(g) = ⨁
λ

C ∙(g)λ

where λ are eigenvalues of adx. Then by the previous theorem, all the components where λ ≠ 0

must be acyclic, so H ∙(g) = H ∙(C ∙(g)0).

Theorem 8.

g acts trivially on H ∙(g,M).

Corollary 9.

Suppose g =⨁i∈Z g, such that gi = {x ∈ g ∣ adhx = ix} for some h ∈ g (i.e., this grading is
internal). Then H ∙(g) is concentrated in degree 0.

Example 10.



More about Lie algebra cohomology.

Note that

H ∙(g,M) = Ext∙U(g)(𝟙,M) ⟹ Ext∙U(g)(N ,M) = H ∙(g, Homg(N ,M)).

There are some particular meanings to cohomology groups of the adjoint representation (recall,
they are also g-modules).
So H 1(g, g) are maps α : g → g such that α([X,Y ]) = [α(X),Y )] + [X,α(Y )] modulo α = adh,

Suppose g is finite dimensional and simple. Now consider a principal sl2 ⊂ g, with elements e,h, f.
Then adh : g → g acts by integer eigenvalues. This makes g a graded Lie algebra

g = ⨁
n∈Z

gn,

and since h is a regular semisimple element, we have h ∈ g0 (as well as e ∈ g2 and f ∈ g−2).
For example, consider g = gln. Then a principal sl2 might consist of e being the matrix of all 1s
immediately above the diagonal, and zero elsewhere; f the matrix of all 1s immediately below the
diagonal and zero elsewhere; and h the diagonal matrix with entries
(n− 1,n− 3,n− 5,… ,−(n− 1)). If we decompose gln with the ad action of this sl2. Then we
have

gln = V0 ⊕ V2 ⊕ V4 ⊕⋯⊕ V2n−2,

where the dimensions are 1, 3, 5,….
In fact, you can view gln in this way as a sum of irreducible representations of sl2. The commutator
operation can be written in terms of this decomposition where the coefficients are polynomials in n.
Now if we view this n as a parameter, we can then get an infinite-dimensional Lie algebra glt for
any t ∈ C, which is a very interesting Lie algebra! For example, it is graded, and you can explicitly
describe the graded components. When t ∈ Z≥0, this algebra has a nontrivial ideal, which you can
quotient out by to get the usual gln. Analogously with Verma modules, they are generally
irreducible, except at (certain) integer values upon which they have a finite dimensional irreducible
quotient.
Another remark: for general t, glt = U(sl2)/(C − (t+1)(t−1)

2 ), and for nonnegative integer t, this
has a finite-dimensional quotient.

Example 11 (Homework).

Let W = Der (C[z, z−1]) = span{Li = zi+1 ∂
∂z } be the Witt algebra. Then ad L0 = ad z ∂

∂z  gives a
grading by the integers.



i.e. H 1(g, g) = Der(g)/Inn(g), the derivations of g modulo the inner derivations of g.
Also, H 2(g, g) consists of infinitesimal deformations of g. More precisely, this is the space of all
Lie structures [, ] on g ⊗C C[ℏ]/ℏ2 which become the usual Lie bracket [, ]g modulo ℏ (this is the
cocycle part); this is taken modulo the transformations which are identity modulo ℏ (this is the
coboundary).

More about computations.

Laplace operator.

Proof.

Definition 12 (Laplace operator).

Consider C ∙(g,M), and ⟨, ⟩ a Hermitian inner product on C ∙. Then we can define d+ the
Hermitian conjugate of d. Now define Δ = dd+ + d+d.:

Theorem 13.

1. Δ commutes with d, Δ is self-adjoint and therefore diagonalizable, which implies that

C ∙(g,M) = ⨁
λ∈Spec Δ

C ∙(g,M)λ.

2. For λ ≠ 0, C ∙(g,M)λ is acyclic, and d|C ∙(g,M)0 = 0, which implies that

H ∙(g,M) = C ∙(g,M)0.

If 𝟙 and is semisimple or compact Lie algebra, then C ∙(g,M)0 is just the subcomplex of bi-
invariant (i.e., left- and right- invariant) differential forms.

1. is easy

□

2. If λ ≠ 0, then if Δω = λω, then ω = dd+ω/λ. If λ = 0, then
0 = ⟨Δω,ω⟩ = ⟨dω, dω⟩+ ⟨d+ω, d+ω⟩, now using that it’s positive definite, we obtain that
they are both zero.

Corollary 14.

We can compute H ∙(g,M) for any semisimple g and finite-dimensional irreducible M: it is 0 if
M ≠ 𝟙 since it’s an Ext functor from trivial to nontrivial, and for M = 𝟙, we have that Δ acts on



Sep 11
Today, we aim to describe computation of:

Let’s start with 1.

Suppose g is semisimple. Recall that for an irreducible representation M, H ∙(g,M) is nontrivial
iff M is trivial (reason is that Ext∙U(g)(𝟙,M) = 0). We can also use the Laplace operator
approach, which acts by Casimir element.

Our goal is compute H ∙(g). This is interesting! We have two approaches: Laplace operator, and
complex of bi-invariant differential forms. Then H ∙(g) = Λ∙(g∗)g (invariants in the exterior power
of the co-adjoint representation). For a semisimple/reductive Lie algebra, the adjoint and
coadjoint representation are isomorphic g ≅g∗, hence H ∙(g) ≅Λ∙(g)g.

Question: What is Λ∙(g∗)g?

Λ∙g∗ as the Casimir operator, so

(Λ∙g∗)0 = (Λ∙g∗)g = H ∙(g).

In particular, H 1(g) = H 2(g) = 0, so no characters, central extensions, as well as no deformations
Additionally, H 1

dR(G) = 0 for any compact connected Lie group G. This implies that H 1(G) is
finite, hence π1(G) is finite, and thus there exists a simply connected cover G̃ which crucially is
still compact!

Furthermore, H 3(g) ≠ 0: the reason is that (Λ3g∗)g ≠ 0, as the commutator element is nonzero!
Since g is semisimple/reductive, the adjoint and coadjoint representations are isomorphic, so we
identify g ≅g∗, hence any compact Lie group has a nonzero H 3.

As an additional corollary, there are no associative division algebras of dimension 8 over R. The
only parallelizable spheres are S 1,S 3,S 7. But why can’t S 7 be a division algebra as well? Well, if
it were, it would be a compact Lie group, and must have nonzero H 3, which isn’t the case.

1. H ∙(g) for g a semisimple/reductive Lie algebra. Will also explain how these are related to
generalized Chern classes.

2. H ∙(n) for n ⊂ g a maximal nilpotent Lie subalgebra. Will also explain how these are related
to Weyl character formulas.

Example 15.

Then g = g∗ = Matn as g-representations. Then we are considering Λ∙(Matn)GLn . The appropriate
version of the fundamental theorem of invariants says that this is a wedge algebra generated by

https://en.m.wikipedia.org/wiki/First_and_second_fundamental_theorems_of_invariant_theory#:~:text=In%20algebra%2C%20the%20first%20and,and%20the%20second%20the%20relations


Proof.
We want to show that T2k−1 = 0 for all k > n.
Lemma: M 2n = 0. This is because M 2 is a n× n matrix with commutative coefficients, so we
can apply Cayley-Hamilton theorem. Then the characteristic polynomial is a polynomial whose
(non-leading) coefficients are homogeneous expressions of tr M 2k = 0, hence the
characteristic polynomial is tn, thus (M 2)n = 0. (Note that this is equivalent to Amitsur-Levitski

M ↦ tr M k for powers of k. Furthermore, observe that tr M 2k = 0 for all even integers 2k. Note
that tr M 2k = tr M ⋅M 2k−1 = −tr M 2k−1 ⋅M = −tr M 2k = 0 since M,M 2k−1 are odd powers
and the entries thus anti-commute.

As an example, consider M = ( ). Then M 2 = ( ).

But x2
11 = x11 ∧ x11 = 0, similarly x2

22 = 0 (living in the exterior algebra), hence
tr M 2 = x12 ∧ x21 + x21 ∧ x12 = 0.
As a similar exercise, tr M 3 ≠ 0.
To see why these elements generate Λ∙(Matn)GLn , note that Matn = V ⊗ V ∗ for V = Cn. Now
Λ∙(Matn) is a quotient of the tensor algebra
T ∙(Matn) = C ⊕ V ⊗ V ∗ ⊕ V ⊗ V ∗ ⊗ V ⊗ V ∗ ⊕⋯. Now the fundamental theorem of invariant
theory says that the invariants of (V ⊗ V ∗) ⊗ (V ⊗ V ∗) are given by pairing the inner two entries
and the outer two entries.
To see why, consider (V ⊗ V ∗) ⊗ (V ⊗ V ∗) ⊗ (V ⊗ V ∗).
Suppose they are matched up like this.

Because one of them is internally paired (the third terms), this expression becomes tr M 3 ⋅ tr M .
So the decomposition into the product of traces corresponds to the cycle type of pairings of the
tensor product.
The conclusion: T2k−1 for k = 1, 2, 3,… generate Λ(Matn)GLn . Since this is an infinite number of
generators, this is dependent; so we can restrict to a finite number of generators. What is the cutoff?

x11 x12

x21 x22

x2
11 + x12x21 x11x12 + x12x22

x21x11 + x22x21 x21x12 + x2
22

Theorem 16.

T2k−1 for k = 1, 2,… ,n generate Λ(Matn)GLn . Furthermore, there are no relations.

https://en.m.wikipedia.org/wiki/First_and_second_fundamental_theorems_of_invariant_theory#:~:text=In%20algebra%2C%20the%20first%20and,and%20the%20second%20the%20relations


□

□

□

theorem.)
The part where there are no relations is below.

Therefore we can compute this algebra. The conclusion:

Proof.
Note that H n2

(gln) ≠ 0 (since it’s equal to H n2
(Un,C) where Un is a compact n2-dimensional

manifold), but there is only way to obtain something of degree n2 from these generators, which
is T1 ∧ T3 ∧⋯∧ T2n−1, hence must be nonzero, hence cannot have any relations (this wedge is
contained in any nontrivial ideal in Λ∙(T1,… ,T2n−1).

Proof.
Observe that H ∙(g) is a Hopf algebra, because H ∙(g) = H ∙(G,C), and we have map
G×G → G (multiplication), hence obtain comultiplication map Δ : H ∙(G,C) → H ∙(G×G,C),
as well as a counit map obtained by the map G → {pt} inducing H ∙(G,C) → C.
It follows that H ∙(g) is supercommutative graded Hopf algebra with H 0(g) = C. Therefore we
can apply the appropriate version of the Milnor-Moore theorem, which implies that H ∙(g) is a
free supercommutative algebra in some generators; since it’s finite-dimensional, they must
necessarily be odd degree, hence it is the free exterior power of odd degree generators.

Sep 13
Let g be a semisimple reductive Lie algebra. Then H ∗(g) = Λ(g∗)g.

Theorem 17.

H ∙(gln) = Λ∙(T1,T3,… ,T2n−1).

Theorem 18.

The cohomology ring always looks like the above case: H ∙(g) = Λ(T1 …,Tℓ) where
degTi = 2mi − 1, mi are the exponents of g, and there are no relations amongst the Ti.

Theorem 19.

H ∙(g) is a free exterior algebra of some odd-degree generators T1,… ,Tℓ where degTi = 2mi + 1

where mi are the exponents of g.

Remark 20.

https://en.m.wikipedia.org/wiki/Milnor%E2%80%93Moore_theorem


□

□

Proof.
It will follow from the proposition below, due to the fact that H ∙(g) = H ∙

dR(G,C), where G is a
compact group, and the latter is a graded Hopf algebra, obtaining comultiplication from

G×G G and counit from G → {pt}.

Proof.
First observe that the counit map ε : H → C has the following form. Since H is graded,
ε|H>0 = 0, it must annihilate everything of positive degree. Let x have degree n. This implies
that Δ(x) = x⊗ 1 + 1 ⊗ x+∑xi(1) ⊗ x

(2)
i  where 0 < degxi < n.

Let x1,x2,… ,xN  be a minimal set of homogeneous generators, degx1 ≤ degx2 ≤ ….
Now denote Hn = C⟨x1,… ,xn⟩, so that H1 ⊆ H2 ⊆ …. To show that this is a free
supercommutative algebra, we need to show that Hn−1 ⊗ C[xn] → Hn is an isomorphism (by
C[xn], I mean the polynomial algebra if degxn is even, and two dimensional exterior algebra if
degxn is odd). Note that Hn is closed with respect to Δ.

Let I ⊂ Hn be the ideal generated by x1,… ,xn−1,x2
n. Now consider the map

Δ′ = Hn Hn ⊗Hn Hn ⊗ C[xn]/x2
n.

Suppose there exists a nontrivial relation ∑k
i=1 αi(x1,x2,… ,xn−1)xi

n = 0, of minimal degree.
We can use Δ′ to get a lower degree relation

Hn ⊗ C[xn]/x2
n ∋ 0 = Δ′(0) =

k

∑
i=1

αi ⊗ 1(xn ⊗ 1 + 1 ⊗ xn)i = ∑ iαix
i−1
n ⊗ xi,

⟹ ∑ iαi(x1,… ,xn−1)xi−1
n = 0,

hence we obtain a relation of lower degree, contradiction.

About degTi

H ∙(g) = H ∙
dR(G,C), where G is a compact group.

mult
−→

Proposition 21 (Weaker version of Milnor-Moore).

Let H be a graded Hopf algebra H =⨁i∈Z≥0
H i, where each H i is finite dimensional, H is

supercommutative, and H 0 = C. Then H is a free supercommutative algebra in some
homogeneous generators.

:

:
Δ
−→

id⊗−/I
−→



We can relate Ti to the generators of S(g∗)g = S(h)W = C[P1,P2,… ,Pℓ] where degPi = mi + 1,
the Weyl group invariants of the symmetric algebra of the Cartan subalgebra.
Consider the Weil algebra, a differential-graded supercommutative algebra:

W(g) = (Λ∙(g∗) ⊗ S ∙(g∗), d)

where the degree of the g∗ in the wedge product is 1, and the degree of the g∗ in the symmetric
algebra is 2. The differential (which satisfies the super Leibniz rule) looks as follows.

It suffices to define the differential d on the generators, i.e. the two copies of g∗. On the exterior
algebra copy, i.e. the left-most column, it is the sum of two maps: one is the map g∗ → Λ2g∗

from the Chevalley complex (in green above), and the other is the isomorphism g∗ → g∗ (in red
above). On the symmetric algebra copy, i.e. the middle column, the differential is just the blue
map, sending g∗ → Λ2g∗ ↪ g∗ ⊗ g∗ (again using the Chevalley complex map).
One can check that the square of this differential is zero. As a complex, this Weil algebra is
acyclic, because it is a free supercommutative algebra generated by degree 1 space and its
differential, which is isomorphic; it is free object of this sort, hence it is acyclic. You can also use
a spectral sequence to compute the cohomology of W(g). On the E 2 page, we get
H ∙(g,S(g)) = Λ(g∗)g ⊗ S(g∗)g.

Cohomology of n−.
Let n− ⊂ g be a maximal nilpotent subalgebra (since all of the maximal nilpotent subalgebras
are conjugate, we may choose it to be n−). Then

:

Theorem 22.

H ∙(n−) =⨁w∈W Cξw, where deg ξw = ℓ(w).



□

Proof.
Here’s a sketch of the proof. We have the BGG resolution of the trivial n−-module:

C ← M(0) ← ⨁M(si ⋅ 0) ← ⋯ ← ⨁
ℓ(w)=n

M(w ⋅ 0).

Each M(w ⋅ 0) is a free n−-module.

Examples of infinite-dimensional Lie algebras, and their
representations.

gl∞ is some Lie algebra of operators in Cℵ0 = C[z, z−1] = V .
Want:

Sep 15
Legitimizing Λ ∞

2 V

Recollection on spinor representations

Let’s consider a simple Lie algebra gln. Then all fundamental representations are just ΛkCn

where Cn denotes the tautological representation.
If we consider the fundamental representations of son, then we do indeed have the fundamental
representations Cn, Λ2Cn, etc. However, this is not all of them! There are one or two additional

Remark 23.

This is not really an honest proof, as this uses “too much” information. In fact, it is possible to
compute the cohomology directly using the Laplace operator, which is done in a paper by Kostant.
(This was done before BGG!) He observed that you can deduce the Weyl character formula from
his method, and moreover his method is general enough that you can also use it on infinite-
dimensional Lie algebras, not just finite-dimensional ones.

operators of multiplication by zi - abelian Lie subalgebra
differential operators, in particular W = span{zi+1 ∂

∂z }i∈Z (these look like infinite matrices
which is zero on all but finitely many diagonals)
Generalized Jacobi matrices
Fundamental representations (representations with highest weight, whose value on only
simple root is 1, and 0 elsewhere). In the finite-dimensional case, these come from Λk.
Therefore in the infinite-dimensional case these should look “something like”
Λ∞/2V = span{vi1 ∧ vi2 ∧…}I={i1<i2<…} ∣ |I ∖ Z≥0| = |Z≥0 ∖ I| < ∞.:



fundamental representations which are not wedge powers of the tautological representation.
The reason for this is that the Lie group SOn is not simply connected, in particular |SOn| ∈ {2, 4}

, therefore there should be fundamental representations of ̃SOn that do not factor through SOn.
In fact, ̃SOn → SOn is a central extension, so we want representations of a central extension of
SOn.
Where do these representations come from?
Let U = Cn be a vector space with symmetric bilinear form B (non-degenerate).

It is an odd analog of the Weyl algebra, attached to a symplectic vector space. If (V ,ω) is a
symplectic vector space, then the Weyl algebra is W(V ) = T (V )/(v1v2 − v2v1 − ω(v1, v2)).
It has a natural filtration by assigning degree 1 to all of the generators. Then the associated
graded of the Clifford algebra is just the exterior algebra of U , i.e.

Now suppose that V = X ⊕X ∗, where X is some vector space (this is always the case when V
is an even-dimensional symplectic vector space, as you can choose a Lagrangian subspace),
then W(V ) ≅D(X), differential operators on this space.
Similarly to W(V ), if U  is even-dimensional, then (over C) we can always always choose a
Lagrangian subspace and a complement of a Lagrangian subspace, so we can write
U = V ⊕ V ∗ (where V ,V ∗ are maximal isotropic) so that B(v, v) = 0 = B(v∨, v∨) and
B(v, v∨) = v∨(v) for v ∈ V , v∨ ∈ V ∗. Then

the algebra of super-differential operators. To any v ∈ V , we may send

Let’s compute this very explicitly. Let x1,… ,xm be a basis of V .
Let x∨

1 ,… ,x∨
m be the dual basis of V ∗.

The isomorphism Cℓ(V ⊕ V ∗) ≅D(Λ∙(V )) can be realized explicitly by specifying the images of
the xi and the x∨

j . For the xi, we map xi ↦ (xi ∧ −). For the x∗
i , we map it to ∂x∨

i
. But what is

the action of ∂x∨
i
? It acts on a monomial xi1 ∧ xi2 ∧⋯∧ xin  as follows. If none of the xij  are xi,

then it sends this monomial to 0. If one of the ij indeed equals i, then we permute the vectors to
make it the first entry (changing sign accordingly), then delete it. For example,

Definition 24.

We denote the Clifford algebra Cℓ(U) = T (U)/(u1u2 + u2u1 −B(u1,u2) ∣ u1,u2 ∈ U) to be a
quotient of the tensor algebra.

:

grCℓ(U) = Λ(U).

Cℓ(V ⊕ V ∗) ≅D(Λ∙(V )),

V ∋ v ↦ (x ↦ v ∧ x) : ΛkV → Λk+1V ,

V ∗ ∋ v∨ ↦ ∂v∨ : ΛkV → Λk−1V .



□

This action is indeed well-defined and is canonical, i.e. independent of the chosen basis. It is an
easy exercise that the images of xi and x∨

j  indeed commute in Cℓ.

Proof.
Here’s a sketch of a proof. By using the images of x∨

j , we can take any nonzero element of
Λ(V ) to 1 ∈ Λ(V ) by killing the vectors one by one until they are reduced to 1. Then clearly we
can produce any element of Λ(V ) from 1 by wedging with the appropriate elements, using the
images of xi.

Constructing spinor representations

In the case of U = V ⊕ V ∗, we have that Cℓ(V ⊕ V ∗) ≅End(Λ∙(V )), and there is a unique
simple module (because it is a matrix algebra, thus the only simple is Λ∙(V ))).
It is acted on by the orthogonal group:

On the other hand, Cℓ(U) is a matrix algebra, so all automorphisms are inner automorphisms.
This implies that we may define a map SO(U) → GL(Λ∙(V )). This is a representation… right?
NO!!! Not really. It is only a projective representation, as scalars (more precisely, the center) act
by identity during conjugation. So in fact we have the following commutative square:

.

This representation does not necessarily factor through SO(U); thus, Λ∙(V ) is a representation
of ˜SO(U).
Now we take the differential of this representation to obtain the corresponding representation of
the Lie algebra (note that on the level of Lie algebras, the central extension is trivial),

∂x∨
1
(x2 ∧ x1) = −∂x∨

1
x1 ∧ x2 = −x2.

Proposition 25.

Cℓ(V ⊕ V ∗) ≅End(Λ(V )).

Remark 26.

If dimU  is odd, then dimCℓ(U) = 2dimU , which is not a square and thus is not a matrix algebra,
but it happens to be the direct sum of two matrix algebras.

SO(U) → Aut(U).

˜SO(U) SO(U)

GL(Λ∙(V )) PGL(Λ∙(V ))

−→⏐↓ ⏐↓−→



On the level of Lie algebras, we can describe this homomorphism explicitly. We have that
so(U) ≅Λ2(U). On the other hand, Cℓ(U) ⊃ Λ2(U) = {u1u2 − u2u1 ∣ u1,u2 ∈ U}, so the map of
Lie algebras is just the composite

It follows that so(U) is just the space of quadratic elements of the Clifford algebra Cℓ(U).
In particular if U = V ⊕ V ∗, then we have a copy of gl(V ) ⊂ Cℓ(U) generated by elements xix

∨
j

(or, more precisely, xix
∨
j − x∨

j xi). This copy of gl(V ) is contained in the copy of so(U), but so(U)

has additional generators, xixj − xjxi and x∨
i x

∨
j − x∨

j x
∨
i . (Recall that the standard presentation

of the form on so(U) is ( ).)

Semiifinite wedge spaces

It’s an infinite-dimensional analogue of this construction.
Consider V = C[z, z−1] and V ∗. Now we consider V  as a graded space with deg zi = i. We may
consider V ∗ as the restricted dual of V , i.e. the direct sum of the duals of the graded
components of V . Then we have the natural identification

We can now consider Cℓ(V ⊕ V ∗).

Now, we want an irreducible representation of Cℓ(V ⊕ V ∗) containing Ψ = ψ0 ∧ ψ1 ∧ ψ2 ∧….
What properties should Ψ satisfy? Well, we want ψi ∧ Ψ = 0 for i ≥ 0 and ψ∗

iΨ = 0 for i > 0

(because ψ∗
i = ∂ψ−i

).

Now let us write

so(U) → Cℓ(U).

so(U) Λ2(U) ↪ Cℓ(U).
∼
−→

0 I

I 0

V ∗ ≅C[z, z−1]
dz
z

, ⟨f, g⟩ = Resz=0g(f) (i.e., coefficient of 
1
z
).

Definition 27 (Clifford algebra).

Let V = C[z, z−1] and V ∗ its restricted dual as above. Define

Here, we identify ψi ↔ zi and ψ∗
i ↔ zi−1 dz.

Cℓ(V ⊕ V ∗) = C⟨ψi,ψ
∗
i ∣ i ∈ Z⟩/I ,

I = {ψi + ψj + ψjψi = 0, ψ∗
iψ

∗
j + ψ∗

jψ
∗
i = 0, ψiψ

∗
j + ψ∗

jψi = δi+j=0}.
:

:

V ⊕ V ∗ = V+

C[z]⊕C[z]dz

⊕ V−

z−1C[z−1]⊕z−1C[z−1]dz

. 



These are both isotropic subspaces with respect to the bilinear form above. Therefore within the
Clifford algebra, we have

Now consider Cℓ(V ⊕ V ∗) ⊗Λ(V+) 𝟙. This is the biggest cyclic representation of Cℓ containing Ψ,
i.e. the universal representation containing Ψ.

Some facts which will be proved next time:

Just as how we have a copy of gl(V ) ⊂ Cℓ(V ⊕ V ∗), we have a copy of gl∞ (generalized Jacobi
matrices, consisting of zeros on all but finitely many diagonals) which can be embedded into a
completion of Cℓ(V ⊕ V ∗) ↷ Λ

∞
2 +∙ .

Sep 18
Today we will continue discussion of F = Λ

∞
2 +∙.

Sources of central extensions

Cℓ(V ⊕ V ∗) ⊃ Λ(V+), Λ(V−).

Cℓ(V ⊕ V ∗) ⊗Λ(V+) 𝟙 =
∞

⨁
k=−∞

Λ
∞
2 +k.

:

Example 28.

Let’s look at finite-dimensional spinor representations. Let U  be an orthogonal vector space, and
B : U × U → C the corresponding symmetric bilinear form.
Then Cℓ(U) is naturally filtered by the degree of the generators (i.e. degx = 1 for all x ∈ U). It is
not graded because the supercommutator from two elements of U  can be a nonzero constant, but it
is still Z/2Z-graded because the relations in Cℓ contains only terms of even degree. Therefore we
have a canonical splitting

Inside the even part, we can consider the subspace Cℓ(U)≤2
even of elements of degree ≤ 2. This is a

nice subspace, because it is a Lie subalgebra with respect to the commutator. Indeed, the
commutator of any two elements in this subspace is even and degree is strictly less than 4, hence
must lie in this subspace. Moreover, we have a homomorphism

(Note that the commutator with U  lands in Cℓ(U)<3
odd.)

In fact, the image of ad  lands in so(U ,B): using the relation in Cℓ, we have that

Cℓ(U) = Cℓ(U)even ⊕ Cℓ(U)odd.

Cℓ(U)≤2
even EndC(U),

y ↦ [y, −] on U ⊂ Cℓ(U)≤1
odd.

ad
−→



Generalization to Cℓ(C[z, z−1] ⊕ C[z, z−1] dz) ← gl∞

First, a technical point: Schur lemma requires vector spaces to be finite-dimensional.

Proof.
First, EndA(M) is a division algebra, since M is simple.

since B(x1,x2) ∈ C.
So we have a homomorphism

which annihilates only constants, i.e. ker ad = C = Cℓ≤0.

Let φ : so(U ,B) → Cℓ(U)≤2
even be a splitting. Let F  be an irreducible representation of Cℓ(U). Then

φ makes F  a representation of so(U ,B), as we have a composition of maps
so(U ,B) → Cℓ(U)≤2

even → gl(F), up to an additive constant, hence F  is a representation of some
central extension of so(U ,B). But we have already constructed a central extension:

where ad  splits the injection so(U ,B) Cℓ(U ,B)=2 ↪ Cℓ(U ,B).

Now we know that the composite so(U ,B) → Cℓ(U) EndC(Cℓ(U)) is a homomorphism.
Suppose F  is a(n irreducible) representation of Cℓ(U), with mapping π : Cℓ(U) → EndC(F). Then
π ∘ φ : so(U ,B) → End(F) turns φ into a representation of F… up to adding some endomorphism
(of the representation):

This z term is something which commutes with everything in the Clifford algebra. If F  is
irreducible, then by the Schur lemma, z ∈ C ⋅ Id, hence some central extension of so(U ,B) acts on
F . (In general, we only require a map such that the composition is a homomorphism, but the two
defining maps do not need to be.)

B(adyx1,x2) + B(x1, adyx2) = (adyx1)x2 + x2adyx1 + x1adyx2 + (adyx2)x1,
= [y,x1x2 + x2x1],
= [y,B(x1,x2)] = 0,

Cℓ(U ,B) so(U ,B),
ad
−→

0 → C → Cℓ≤2
even so(U ,B) → 0,

ad
−→

∼
−→

φ ad
−→

(π ∘ φ)([y1, y2]) = [π ∘ φ(y1),π ∘ φ(y2)] + z.

φ

Lemma 29 (Schur lemma, infinite-dimensional analogue).

Let A be an associative C-algebra, M  a simple A-module of countable dimension. Then
EndA(M) = C.



□

Second, dimEndA(M) is countable since M is cyclic, hence if M = A ⋅m, then any
φ ∈ EndA(M) is determined by φ(m) ∈ M, which has countable dimension.
Third, for any nonconstant z ∈ EndA(M), z must be transcendental over C (because there are
no finite extensions of C, thus z cannot satisfy a polynomial identity). Suppose for the sake of
contradiction that C(z) ⊂ EndA(M). But C(z) is already of uncountable dimension:
{ 1

z−c ∣ c ∈ C} are linearly independent, else there would be a polynomial relation, hence
contradicting that z must be transcendental. It follows that there exist no nonconstant functions
in EndA(M).

Cℓ(V ⊕ V ∗)

Let V = C[z, z−1] and V ∗ = C[z, z−1] be the restricted dual of V . Recall that

Further, recall that ψi ↔ zi and ψ∗
i ↔ zi−1 dz.

Now we define the fermion space to be the semiinfinite wedge product.

Gradings on F

Charge

Cℓ(V ⊕ V ∗) = C⟨ψi,ψ
∗
i ∣ i ∈ Z⟩/{ψiψj + ψjψi = 0, ψ∗

iψ
∗
j + ψ∗

jψ
∗
i = 0, ψiψ

∗
j + ψ∗

jψi = δi+j=0}.

Definition 30 (fermion space).

We define the fermion space F  to be

This space has a monomial basis which can be indexed as follows:

Therefore we have an alternative description as:

Now we may identify 1 ↔ ψ0 ∧ ψ1 ∧ ψ2 ∧…, and ψi ↔ ψi ∧ − and ψ∗
i ↔ ∂ψ−i

. Under this
correspondence, we have that

F = Λ
∞
2 +∙(C[z, z−1]) = Cℓ/I ,  where

I = left ideal generated by ψi for i ≥ 0 and ψ∗
i  for i > 0.

{∏
i∈S1

ψi ∏
j∈S2

ψ∗
j ∣ S1 ⊂ Z<0,S2 ⊂ Z≤0, both finite}.

F = Span{vi1 ∧ vi2 ∧⋯ ∣ i1 < i2 < …, {i1, i2,…} ∖ Z≥0, Z≥0 ∖ {i1, i2,…} are finite}.

∏
i∈S1

ψi ∏
j∈S2

ψ∗
j ↔ ± ⋀

k∈(Z≥0∖−S2)∪S1

.



According to this, we have the grading on F  as follows:

Energy

The mapping gl∞ → Cℓ(U)

The space gl∞ = gl(C[z, z−1]) has a basis of Eij (where the ith basis element of C[z, z−1] is zi).
Then gl∞ ∋ Eij ↦ ψiψ

∗
−j ∈ Cℓ(U).

Definition 31 (charge).

We define charge to be

Here, degψ0 ∧ ψ1 ∧⋯ = 0, degψi = 1, and degψ∗
i = −1 (as operators).

deg ⋀
k∈S

ψk = |S ∖ Z≥0| − |Z≥0 ∖ S|.:

F = λ
∞
2 +∙(V ) = ⨁

k

Λ
∞
2 +k

charge=k

.

Definition 32 (energy).

We define energy to be

Here, degψ0 ∧ ψ1 ∧⋯ = 0, and degψi = −i = degψ∗
i  (as operators).

deg ⋀
k∈S

ψk = − ∑
k∈S∖Z≥0

k+ ∑
k∈Z≥0∖S

k.

Remark 33.

Charge can be any integer, but energy is always nonnonnegative (on the infinite wedges)!

Lemma 34.

By an easy computation, we can see that
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∞
2 +⋅(V ), central extensions of gl∞

All this gives us the standard formula:

[ψiψ
∗
−j,ψk] =

[ψiψ
∗
−j,ψ

∗
−k] =

⎧
⎨⎩
0 k ≠ j,

ψi k = j,
⎧⎪⎨⎪⎩0 k ≠ i,

ψ∗
−j k = i.

[Eij,Ekl] = Eilδj=k −Ekjδl=i.

Definition 35.

Let glf∞ consist of endomorphisms of V = C[z, z−1] with finitely many nonzero coefficients in the
basis {vi = zi ∣ i ∈ Z}.
Let glJ∞ ⊃ glf∞ consist of “generalized Jacobi matrices” - endomorphisms of V  with nonzero
coefficients on finitely many diagonals, as illustrated below (imagine that it goes off to infinity in
every direction):

⎛⎜⎝∗ ∗ 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0
0 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0
0 0 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ 0 0
0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ 0
0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗

⎞⎟⎠Definition 36 (Witt algebra).

Let V = C[z, z−1] = span{zk} and W = span{Li = −zi+1 ∂
∂z } be the Witt algebra. In the Witt

algebra we have the relations [Ln,Lm] = (n−m)Ln+m.
:



We have

glf∞ ⊂ glJ∞ ⊃ V ,W .

The Z-grading on glf∞, glJ∞ comes from that on V , where deg zi = i. Therefore degEij = i− j,
and this extends to glJ∞ (which restricts to V ,W ).

Now suppose that g =⨁i∈Z gi, and g contains the subalgebras g<0, g0, and g>0 (it is the direct
sum of them). Note that this choice is not unique, nor is it canonical. However, we must choose
one to define category O.
As an example, for a finite-dimensional semisimple g, grading comes from adh, where h is part
of a principal sl2 triple. Then g<0 = n−, g>0 = n+, and g0 = h. Then g = g− ⊕ g0 ⊕ g+ is just the
Cartan decomposition.
Then we can consider the category O of g-modules.

Just as in the finite-dimensional case, U(g) acts on any M ∈ O.

Definition 37.

Let g be a graded Lie algebra. A g-module M  is in category-O if:

M  is graded, upper bounded degree, and has finite dimensional graded components;
M =⨁i∈Z Mi where Mi = 0 for i ≫ 0, dimMi < ∞, and giMj ⊂ Mi+j;
g>0 acts locally nilpotently (implied by the first point; conversely, along with some other mild
assumption i.e. finitely generated, implies the first point);

g0 acts semisimply (this is a standard requirement for category O, but is not implied by any of
the previous points).

Example 38.

Let M(λ) be the Verma module for sl2. Consider the sum

1 + fe+ f 2e2 + f 3e3 +… ∉ U(sl2).

However, this is a well-defined action on M(λ), because for any given element of M(λ), only
finitely many terms in this infinite sum act nontrivially. This can be formalized as follows.
Let J>N  be the left ideal in U(g) generated by g>N =⨁i>N gi. We have that J>N ⊃ J>N+1, and
⋂N∈Z J>N = 0. Then consider

Ũ(g) = lim
∞←N

U(g)/J>N .

Another option to get a bigger completion, is to define J>N  to be the left ideal generated by

:

:



Similarly, we can define a completion C̃ℓ if Cℓ = Cℓ(C[z, z−1] ⊕ C[z, z−1 dz]), where
degψi,ψ∗

i = i.

The first embedding fails to extend to an embedding of glJ∞. Imagine we have some infinite sum
∑i+j=k bijψiψ

∗
j  for some fixed k. We want finitely many terms outside the ideal Cℓ(ψ>N ,ψ∗

>N).
We want to swap the factors ψi and ψ∗

j  so that we have positive indices on the right. If k ≠ 0,
then there is no issue, since ψiψ

∗
j = −ψ∗

jψi. The problem arises when k = 0: we have to sum up
infinitely many constants. This is the reason why the central extension arises.

The solution is that we must change the original embedding glJ∞ ↪ Cℓ: we send

This is not an embedding of Lie algebras, but it is a homomorphism from a central extension of
Lie algebras. (If we change the cutoff from 0 to something else, say 1, we achieve more or less
the same result.) This is an embedding of a trivial central extension of glf∞. However, it extends

to an embedding g̃l
J

∞ ↪ C̃ℓ.
To compute the cocycle, we wish to compute the new commutators of the embedded elements

where the cocycle ω is nonzero iff k = j and l = i. Then it turns out that

This is well-defined on generalized Jacobi matrices: on a generalized Jacobi matrix as follows,

U(g)>N . The difference between this definition and Ũ(g) is that in Ũ(g), the infinite series must be
of bounded degree; in this alternate bigger completion, the degree can be unbounded.

Proposition 39.

We have an embedding of Lie algebras glf∞ ↪ Cℓ. This is done by Eij ↦ ψiψ
∗
−j.

We also have an embedding g̃l
J

∞ ↪ C̃ℓ, where g̃lJ∞ is a central extension of glJ∞.

Eij ↦
⎧⎪⎨⎪⎩ψiψ

∗
−j j < 0

−ψ∗
−jψi j ≥ 0.

[Eij,Ekl]new = δj=kEil − δi=lEkj + ω(Eij,Ekl),

ω(Eij,Ekl) = δi=lδk=j ⋅

⎧⎪⎨⎪⎩0 i, j ≥ 0,

0 i, j < 0,

1 i ≥ 0, j < 0,

−1 i < 0, j ≥ 0.



there may be infinitely many nonzero entries, but the only entries which produce nonzero
cocycles come from the region in red (bounded by the axes), which is finite.

In the second homework, we compute the restrictions of this cocycle to the abelian Lie algebra
and to the Witt algebra.

⎛⎜⎝∗ ∗ 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0
0 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0
0 0 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ 0 0
0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ 0
0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗

⎞⎟⎠Remark 40.

This cocycle is nicknamed the “Japanese cocycle” because it was first introduced by Date, Jimbo,
Kashiwara, and Miwa sometime in the 1980s.

Example 41.

Let’s compute the central extension of the abelian algebra V = C[z, z−1].
Let ai = zi. Then ai consists of a single diagonal of 1s shifted by i. For example, a4 looks like:

⎛⎜⎝ 1
1

1
1

1
1

1
1

1

⎞⎟⎠
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2 V

Recall that we defined the fermion space F  in Definition 30 (fermion space).

Now C̃ℓ ↷ F , with ψi = vi ∧ −, and ψ∗
−i = ∂vi .

Recall from Example 41 that we computed the central extension of the abelian Lie algebra
C[z, z−1].

Then [ai, aj]new = [ai, aj]old
=0

+ iδi+j=0 ⋅ 1.

Then we get a central extension called the Heisenberg algebra:



0 → C → a

Heisenberg algebra

→ V → 0.

Remark 42.

An important observation is that Λ
∞
2 +∙(V ) is a category O object in Cℓ-mod. This implies that

where the Virasoro algebra Vir is the unique (up to isomorphism) nontrivial central extension of the
Witt algebra W .

a, Vir ⊂ g̃l
J

∞ ↷ Λ
∞
2 +∙(V ),

Remark 43.

Unsurprisingly, F  is related to fermions.

Definition 44 (Heisenberg algebra).

We define the Heisenberg algebra a to be the central extension of the abelian Lie algebra

Explicitly,

0 → Cc → a → C[z, z−1] → 0.

gl
J

∞ ⊃ a = Span{c, ai ∣ i ∈ Z}, [c, −] = 0, [ai, aj] = δi+j=0c.
–



Is a ↷ F  irreducible?

Since a acts on F , the first question we ask is: is this representation irreducible?
NO.
We have two gradings: charge and energy, see Definition 31 (charge) and Definition 32
(energy).
Charge is by eigenvalues of a0, so

The charge comes from comparison to the vacuum vector v0 ∧ v1 ∧….
This grading splits F =⨁m∈Z Fm, and this grading is preserved by a, because everything in the
Heisenberg algebra commutes with a0. In particular, each Fm is a subrepresentation.

The next question: is Fm irreducible?
Now let us first take a brief detour to discuss what representations of the Heisenberg algebra a
look like in general.

Category O for a
We first have the grading on a as follows: deg ai = i, and deg c = 0.

Then we write

Definition 45 (Fermion space as a Heisenberg algebra module).

We defined the Fermion space F  as a semiinfinite wedge product, and a quotient of the Clifford
algebra, in ^b98ac3. We now define the a-module structure on it.

The action of ai on F  is given by

with this alternate form if i ≠ 0. When defined in this way, a0 can act by any scalar, and we may
choose this scalar. However, there is a natural choice for a0 following this definition: we send

ai ↦ ∑
r+s=i

ψrψ
∗
s =
if i≠0

∑
s>0,r+s=i

ψrψ
∗
s − ∑

s≤0,r+s=i

ψ∗
sψr,

a0 ↦ ∑
s>0

ψ−sψ
∗
s − ∑

s≤0

ψ∗
sψ−s.

deg vi1 ∧ vi2 ∧⋯ = |I ∖ Z≥0| − |Z≥0 ∖ I|.

a = n−

Span{ai∣i<0}

⊕ h

Span{a0,c}

⊕ n+

Span{ai∣i>0}

.  

Definition 46 (category-O(a)).



Now χ : h → C is determined by two numbers: A, which is the eigenvalue of a0, and C, which is
the eigenvalue of c. Let us denote χ by (A,C).

As graded vector spaces, Fχ = C[a−1, a−2,…], the “symmetric polynomials of infinitely many
variables.” Making this identification, what is the action of a on this space? The answer is that

This is a very explicit and concrete description of this module. From this description, it is easy to
see that:

Proof.
Suppose we have some polynomial p ∈ C[a−1, a−2,…], where p = a

u1
−1a

u2
−2 ⋯ a

uN

−N  is (one of) the

The objects of category-O for the Heisenberg algebra a are a-modules M  which are:

graded, M =⨁Mi, Mi are finite-dimensional and aiMj ⊂ Mi+j,

bounded, i.e. Mi = 0 for i ≫ 0,
h-semisimple.

Definition 47 (Fock space).

The model objects in category-O(a) are the “Verma” modules induced from one-dimensional
h ⊕ n+ representations Cχ

where Cχ satisfies the following properties:

Fχ = U(a) ⊗U(h⊕n+) Cχ,:

dimCχ = 1,
n+Cχ = 0.
We call the Fχ Fock spaces.

ai
acts by
−→

⎧⎪⎨⎪⎩ai ⋅ − i < 0,

A ⋅ − i = 0

C ⋅ i ⋅ ∂a−i
i > 0.

Proposition 48.

If C ≠ 0, then Fχ is irreducible.



□

□

highest degree monomials.
Then

Block decomposition

It follows that O =⨁χOχ.

Proof.
M ∋ v contains a highest degree vector v satisfying:

Proof.
Suppose we had an extension

Then take any homogeneous preimage v′ of 1 ∈ Fχ in M. On the other hand, Fχ ∋ 1 ↦ v ∈ M,
and v, v′ are linearly independent highest weight vectors. Each of them generates a copy of Fχ

in M, and they do not intersect (as otherwise they would intersect in a proper submodule,
contradicting the fact that Fχ is simple).

∂u1
a−1

⋯∂uN
a−N

P ∈ C − {0}, U(a)1 = Fχ.

Proposition 49.

Let χ = (A,C). Then C ≠ 0 ⟹ Oχ contains unique simple object Fχ.

n+v = 0

a0v = Av

□

cv = Cv.
Then Fχ → M sends 1 ↦ v.
This has to be an embedding as Fχ is simple, hence any M ∈ Oχ contains a copy of Fχ.
Furthermore, the A,C are uniquely determined by χ, hence the result.

Proposition 50.

In fact, Oχ is a semisimple category and every object is a direct sum of Fχs, i.e.
Ext1

U(a)(Fχ,Fχ) = 0.

0 → Fχ → M → Fχ → 0.

Remark 51.



Now crucially, this implies that all Fm, and even F , are category O-representations. It remains
to show that there are finitely many elements of a fixed energy.

We know that energy is nonnegative, and moreover there is a unique vector with minimal
energy 0: namely the vacuum vector ψ = v0 ∧ v1 ∧⋯. Now we can get any vector by applying
ψi for i < 0, which has degree −i > 0, and ψ∗

i  for i ≤ 0, which still has (nonnegative) degree
−i ≥ 0. This implies that there are only finitely many monomial vectors with a given positive
degree. This satisfies the condition that the graded components Fχ are finite-dimensional.

But the graded components Fm are graded by charge, not energy! Fortunately, we see that F  is
a direct sum of Fχ, where χ = (A, 1) for different A’s (note that c always acts by 1, hence C = 1,
but a0 gives the charge degree). In particular, Fm = F ⊕N

m,1 , so the Fm are also finite dimensional,
thus Fm and F  are category O objects.

Next time: we compare the characters to find the N  (spoiler: they are actually always 1). We will
compute

where m is the charge and N  is energy, and same for Fm,1.
This will give us some nontrivial combinatorial formula, which is known as the Jacobi triple
product identity.

Sep 27
Some combinatorics
Recall Definition 30 (fermion space)

(Here the F  stands for “fermion.”)

Gradings:

Recall also the charge and energy gradings: Definition 31 (charge) and Definition 32 (energy).

Charge

The charge grading satisfies C(Ψ) = 0, C(ψi) = 1, and C(ψ∗
i ) = −1.

This is a standard argument when working in category O.

:

ch F = ∑ tchargeqN dimFm[N ],

F = Λ
∞
2 +∙(V ) = Cℓ(ψi,ψ

∗
i )i∈Z/Cℓ ⋅ {ψi,ψ

∗
j ∣ i ≥ 0, j > 0} ∋ 1 = Ψ = v0 ∧ v1 ∧….:



Energy

The energy grading satisfies e(Ψ) = 0, e(ψi) = −i = e(ψ∗
i ).

The energy degree on F  is always nonnegative! This is because F = Λ(ψi,ψ∗
j ∣ i < 0, j ≤ 0} ⋅ Ψ

.

Therefore

where m is the charge and k is the energy.

F  as an a-mod

Recall from ^07753e that we have that

as an a-mod, where a is the Heisenberg algebra. The space Fχ is called the Fock space
representation of the Heisenberg algebra a.

Recall that χ is determined by a pair (A,C), where A is the a0-eigenvalue and C is the c-
eigenvalue. In F , we have that C = 1 always, and A = m when Fχ ⊂ Fm, the charge. So in fact

Our first task is to determine chFm,1.

Note that as a vector space,

F = ⨁
m∈Z,k∈Z≥0

Fm,k,

Definition 52 (character of F ).

We can write the character of F , a generating function, as

chF = ∑dimFm,kt
mqk ∈ Z[t, t−1][[q]].

Proposition 53.

chF = (∏
i>0

(1 + tq i))(∏
j≥0

(1 + t−1q j)).

F = ⨁
χ

Fχ

F = ⨁
m∈Z

F ⊕Nm

m,1 .



where 1 has charge m (and some unspecified energy).
Let us recall that

hence the charge of each ar is 0 (it is a sum of monomials with exactly one ψi and one ψ∗
j , thus

has 1 − 1 charge), while the energy of each ar is −r; it follows that a−1 has energy 1, a−2 has
energy 2, etc.
So 1 has charge m and unspecified energy e, while the character of C[a−1, a−2,…] which is a
symmetric algebra with generators of degree 1, 2, 3,… hence has character ∏i>0

1
1−q i

.
Therefore we have that

and we still need to determine the energy e.

Therefore we want to find the relevant coefficients Nm such that

(We still don’t know what’s going on with e.)

Describing all monomials in Fm,k

Fix m ∈ Z. Now we describe all monomials in Fm,k.
Observation: let us describe the minimal k such that Fm,k ≠ 0.
Suppose m ≥ 0. Then the minimal energy of a vector is the “dense” monomial
v−m ∧ v−m+1 ∧⋯∧ v−2 ∧ v−1 ∧ v0 ∧ v1 ∧…, with no holes. The energy of this is k = m(m+1)

2 .
Observation: Every possible monomial (of a fixed charge) can be produced from a “dense”
monomial (with no holes) by moving some of the indices to a lower index. (Depicted below)

How does the energy change upon shifting these indices? We may assign λ1 to be the distance
the first vector moves, λ2 the distance the second vector moves, etc. We observe that

Fm,1 = C[a−1, a−2,…] ⋅ 1,

ar = ∑
i+j=r

ψiψ
∗
j ,

chFm,1 = ∑
e∈?

? ⋅ tmqe ⋅ ∏
i>0

1
1 − q i

,

(∏
i>0

(1 + tq i))(∏
j≥0

(1 + t−1q j)) = ∑
m∈Z,e=?

? ⋅ tmqe ∏
i>0

1
1 − q i

.



λ1 ≥ λ2 ≥ λ3 ≥ … and for all sufficiently large i, λi = 0. (In the above example, λ1 = 2,
λ2 = λ3 = 1, and all remaining λi = 0.)
This means that to any monomial, we may assign a partition - equivalently, a Young diagram! In
the above example, we have:

We know from the first observation that the minimal energy of any monomial with charge m is
m(m+1)

2 . How much larger is the energy of a monomial with associated Young diagram T ? Well,
then answer is simply |T |: the number of boxes. In other words, the energy of a monomial with
charge m is m(m+1)

2 + |T |. (In the above example, m = 3 and |T | = 5, so the energy is 11.) It
follows that partitions of d give us the charge-m-monomials with energy d more than the
minimal energy. This is summarized below.

But now we are done! Because then Fm has the same size as the Fock space Fm,1, so
Fm ≅Fm,1 and all multiplicities are 1.

Jacobi triple product identity

Proposition 54.

Let P(d) denote the number of partitions of d. Then

chFm = tmq
m(m+1)

2 ∑P(d)qd = tmq
m(m+1)

2 ∏
i>0

1
1 − q i

.

Theorem 55 (Jacobi triple product identity).

∏
i>0

(1 + tq i)∏
j≥0

(1 + t−1q j)∏
k>0

(1 − qk) = ∑
m∈Z

tmq
m(m+1)

2 .



Some consequences of Jacobi triple product identity
The Jacobi triple product identity is

If we expand ∏k>0(1 − qk), we will see that most of the coefficients are zero, and the remaining
coefficients are ±1, precisely at the pentagonal numbers, due to Euler.
The precise formula, known as the pentagonal number theorem, is:

It turns out that this can be deduced from the Jacobi triple product identity by substituting q = x3

and t = −x−1. This is a very important identity!

Now consider the negative part of the Witt algebra,

This is a maximal nilpotent subalgebra of W , and the gradings are given by degLi = i (from the
action of adL0). Now recall from Sep 13 that the cohomology of a maximal nilpotent subalgebra
is related to BGG resolutions.
Then H ∙(W+) = H(Λ∙(W ∗

+)), where Λ∙(W ∗
+) has one generator in degree 1, one generator in

degree 2, etc. So the complex Λ∙(W ∗
+) is graded both by the ∙ and by the generators from the

space itself. The character of this complex is precisely ∏k≥0(1 − xk).

Corollary 56.

Fm is irreducible as an a-module.

∏
i>0

(1 + tq i)∏
j≥0

(1 + t−1q j)∏
k>0

(1 − qk) = ∑
m∈Z

tmq
m(m+1)

2 .

Theorem 57 (Euler pentagonal number theorem).

∏
k>0

(1 − xk) = ∑
m∈Z

(−1)mx
m(3m+1)

2 .

W+ = Span{L1,L2,…} ⊂ W .:

Theorem 58 (L. Goncharova).

For m > 0,

and the degrees are precisely the values m(3m±1)
2 .

dimHm(W) = 2,



More precisely, the complex Λ∙(W ∗
+) obtains a grading from adL0 and the cohomology groups

inherit this grading. It turns out that dimHm(W) = 2 for any m > 0, and the nonzero graded
components are precisely the values m(3m±1)

2 .

Sep 29
Today we will discuss the combinatorics from last class, and explain the relation of the theorem
from last class to symmetric polynomials.

Euler pentagonal number formula

Recall from last class, Theorem 57 (Euler pentagonal number theorem) tells us that

Last time we proved this identity by substituting particular values into the Jacobi triple product
identity. Let us see a combinatorial proof of this identity.
Proof.
The idea is that the left hand side is some Euler characteristic.
First,

where q+(n) denotes the number of partitions of n into an even number of different parts, and
q−(n) denotes the number of partitions of n into an odd number of different parts.
Let q(n, k) be the number of partitions of n into k different parts, i.e.
q(n, k) = #{n = λ1 +⋯+ λk ∣ λ1 > λ2 > ⋯ > λk > 0}. It follows that q+(n) =∑ q(n, 2m) and
q−(n) =∑ q(n, 2m+ 1).
Consider the graded vector space

Let us define the differential d : C ∙(n) → C ∙+1(n). Let eλ denote the basis element associated
to the partition λ of n. Define λ′ to be the partition constructed as follows. Consider a Young
tableaux associated to λ (as below). We then take boxes off of the furthest diagonal, as far as
we can, and then move them to the bottom to form a new row. If we cannot do this (i.e., if the

Remark 59.

The proof was later simplified by Feigen-Fuks using the Laplace operator.

∏
i>0

(1 − xi) = ∑
m∈Z

(−1)mx
m(3m+1)

2 .

∏
i>0

(1 − xi) =
∞

∑
n=0

(q+(n) − q−(n))xn,

:

C ∙(n) = ⨁C k(n), C k(n) = Cq(n,k), basis given by partitions as above.



□

new bottom row is not shorter than the original bottom row and thus is not a valid Young
tableaux with strictly decreasing rows), then set d(eλ) = 0. Otherwise, set d(eλ) = eλ′ .

It turns out that d2 = 0. This is because the diagonal of the newly formed Young tableaux is at
least the length of the diagonal of the original Young tableaux.
Now what is H ∙(n), the cohomology of this complex? It is clear that H k(n) is the number of λ
such that d(λ) = 0 and there does not exist λ̃ such that d(λ̃) = λ. The first condition, d(λ) = 0, is
equivalent to the length of the diagonal being at least the length of the bottom row. The second
condition, λ ∉ d(C k−1), is equivalent to the condition that we cannot put the last row as the
diagonal. But in fact there are only two possibilities illustrated below: it is an m×m square with
a staircase attached in two possible ways:

These give m2 + m(m−1)
2 = m(2m−1)

2  and m2 + m(m+1)
2 = m(3m+1)

2 , respectively.
Now the left hand side of Euler pentagonal number identity is just the generating function of the
Euler characteristic of this complex, while the right hand side is the generating function for the
cohomology of the complex.

Λ
∞
2 +∙(V ) = F =⨁m∈Z Fm

Recall (see Definition 30 (fermion space), Definition 47 (Fock space)) that F  is the fermion
space, Fm is the Fock space (aka boson space), and the Fm are the decomposition according
to the charge grading. (This is known as the boson-fermion correspondence.)

Remark 60.

What is unknown about this (and is a very interesting question) is whether we can reduce the
computation of H(W+), the Witt algebra, to some complex using this method.



This is a bit surprising: something which is an exterior algebra looks like something which is a
direct sum of symmetric algebras (recall that Fm is a free module over a symmetric algebra,
namely Fm = C[a−1, a−2,…] ⋅ 1). This is impossible in finite dimensional case, as the exterior
part is finite dimensional while the symmetric part is infinite dimensional. But in the infinite-
dimensional case, this is actually not that surprising!

Now recall that the charge 0 part of the fermion space F , namely F0, is identified with the Fock
space F0 = C[a−1,…]. It has a monomial basis, Ψλ for all possible partitions λ, where

Example 61 (easiest infinite-dimensional example).

Consider C[x]. Then Symn(C[x]) = (C[x]⊗n)Sn = C[x1,… ,xn]Sn  which is the algebra of
symmetric polynomials. But recall that this is just C[e1, e2,… , en] where ek is the kth elementary
symmetric polynomial (of degree k); this is also equal to C[p1,… , pn] where pk =∑n

j=1 x
k
j  is the

kth power sum; there are many other presentations but they all have generators in degree 1, 2,… ,n

.
Now Λn(C[x]) = C[x1,… ,xn]skew-symmetric (i.e. p(x1,… ,xn)|xi=xj

= 0). But then each
polynomial is divisible by ∏i>j(xi − xj), and furthermore the quotient is a symmetric polynomial,
hence

so the two spaces differ by just a grading, induced by multiplication by the factor ∏i>j(xi − xj).
Now we need the basis in C[x1,… ,xn]Sn  given by the monomial basis in Λn(C[x]): these are
precisely alternations of xλ1+n−1

1 x
λ2+n−2
2 ⋯xλn

n  for all possible partitions
λ = (λ1 ≥ λ2 ≥ ⋯ ≥ λn). But this is the same as the determinant of the matrix given by
(aij = x

λi+n−i
j ). Now the factor from above is just the determinant of the Vandermonde determinant

of the matrix (bij = xi−1
j ), so the basis elements in C[x1,… ,xn]Sn  corresponding to the monomial

basis in Λn(C[x]) is just the ratio of these two determinants. We call these basis elements
sλ(x1,… ,xn) the Schur polynomials. These form a natural basis of C[x1,… ,xn]Sn!
The Schur polynomials can be regarded as a polynomial in {e1,… , en}, or in {p1,… , pn}, or in
any other generating set.

Λn(C[x]) = ∏
i>j

(xi − xj)C[x1,… ,xn]Sn ,

:

Proposition 62.

The presentation of the Schur polynomial does not depend on n, i.e.

sλ(x1,… ,xn) = Sλ(p1, p2,…).



Ψλ = v−λ1 ∧ v−λ2+1 ∧⋯∧ v−λn+n−1 ∧ vn ∧…, where λ = (λ1 ≥ λ2 ≥ ⋯ ≥ λn ≥ 0).
We’d like to identify Ψλ as a polynomial in the a−j, using the identification F0 = C[a−1, a−2,…].

The proof will be next time, but the proof uses the presentation of Schur polynomials above,
namely the interpretation of Schur polynomials as a monomial basis in Λn(C[x]).

Oct 2
Boson-fermion correspondence ⟷ symmetric polynomials

Let’s first recall some properties of the ring of symmetric polynomials. Recall that

The polynomial em is called the mth elementary symmetric polynomial.
However, this is not the only presentation. We have other generators:

Proof.
We want to express the ei,hi in terms of pi. To do this, we want to write the generator series for
each set of generators.
We have the generating series

Theorem 63.

Ψλ = Sλ(a−1, a−2,… , a−n,…)Ψ0.

C[x1,… ,xN ]SN = C[e1,… , en], em = ∑
1≤i1<i2<⋯<im≤N

xi1xi2 ⋯xim .

hm = ∑
1≤i1≤i2≤⋯≤im≤N

xi1 ⋯xim , complete symmetric polynomial,

pm =
N

∑
i=1

xm
i , power sums.

Proposition 64.

C[x1,… ,xN ]SN = C[h1,… ,hN ] = C[p1,… , pN ].

Remark 65.

Note that the first equality is true over Z, but the second is only true over Q! So power sums require
more than just integers to achieve equality.



□

So we have that

From this we may write the hi in terms of ei; for example, h1 = e1, h2 = e21 − e2, etc.
Now we may write the generating series for pm as

∑ pmt
m−1 =

N

∑
i=1

∞

∑
m=1

xm
i t

m−1 =
N

∑
i=1

xi

1 − xit
.

To achieve something of this form, we apply ∂t log to the generating series for em.

It follows that

Now using this identity, we can express e in terms of p, and vice versa.

We have surjections

which are homomorphisms of graded algebras.
Furthermore, for m < N + 1, we have em ↦ em, and the kernel of this map is (eN+1).
This means that we can define the inverse limit of the symmetric algebras.

N

∏
i=1

(1 − xit) = 1 + ∑(−1)memtm,

N

∏
i=1

(1 − xit)−1 = 1 + ∑hmt
m.

(1 − e1t+ e2t
2 −…)(1 + h1t+ h2t

2 +…) = 1.

∑(−1)mmemt
m−1

1 +∑(−1)memtm
= ∂t log∏(1 − xit) =

N

∑
i=1

xi

1 − xit
= ∑

m

pmt
m−1.

∑(−1)mmemt
m−1 = (∑ pmt

m−1)(1 + ∑(−1)memtm).

πN : C[x1,… ,xN ,xN+1]SN+1 C[x1,… ,xN ]SN
xN+1=0
−→

Definition 66 (infinite symmetric algebra).

Define

S = graded  lim
∞←N

C[x1,x2,… ,xN ]SN = C[e1, e2,… , em,…].

(We require the inverse limit over the graded components so as not to obtain infinite series.)

:



Natural bases of S
We have C[x1,… ,xN ]SN ∋ monomial symmetric functions mλ for partitions
λ = λ1 ≥ λ2 ≥ …,≥ λN  of length N . By definition,

where the sum runs over all possible monomials of the above form.
Warning!! this is NOT just the symmetrization; for example if two λi are equal, then we only
count that monomial once, e.g. for N = 2 and (1, 1) partition, we have m1,1 = e2 = x1x2, NOT
x1x2 + x2x1.

Now C[x1,… ,xN ]SN  contains the Schur polynomials λ = (λ1 ≥ ⋯ ≥ λn ≥ 0). This comes from
identifying C[x1,… ,xN ]SN ≅C[x1,… ,xN ]SN ∏i>j(xi − xj) of skew-symmetric functions, and
the latter has a monomial skew-symmetric basis identified with Schur polynomials.

Proposition 67.

πN(hm) = hm and πN(pm) = pm, so we have well-define elements pm,hm ∈ S, hence

S = C[h1,h2,…] = C[p1, p2,…].

mλ = ∑xλ1
i1
⋯xλN

iN
,:

Proposition 68.

Recall from Sep 29 that sλ is a ratio of two determinants. Then the leading term is mλ and the
remaining terms are smaller:

In other words, the sλ is upper triangular in the basis of mμ.

sλ = mλ + ∑
μ<λ

(∗) ⋅mμ.

Proposition 69.

πN(mλ) = mλ and πN(sλ) = sλ. This implies that we have bases mλ, sλ ∈ S indexed by all
partitions (in contrast, the discussion above limits the partitions to N).

Theorem 70.

We have an isomorphism



□

Proof.
Consider the following finite approximation.

sending

ξ ↦ ξ ∧ vN ∧ vN+1 ∧….

This is an isomorphism on all graded components of this space of energy ≤ N . Furthermore, on
these graded components, the morphism commutes with the action of
a− = Span{a−1, a−2,…} ⊂ a.
Moreover, identifying z−1 ↔ x, we have

where monomials correspond to monomial skew-symmetric functions.
Finally, we note that a−m acts as multiplication by pm on C[x1,… ,xN ]SN ∏i>j(x

−1
i − x−1

j ).
Why is this? Well, (C[z−1]zN−1)⊗N = C[x1,… ,xN ] ⋅ x1−N

1 ⋯x1−N
N , and the elements of this Lie

algebra act by the Leibniz rule:

On the other hand, the monomial basis is in terms of the Schur polynomial basis of
C[x1,… ,xN ]SN ∏i>j(x

−1
i − x−1

j ). This proves the theorem for energy level up to N . But this
works for any N , so we are done.

Oct 4
Boson-fermion correspondence, continued

Recall that

where Fm are the (irreducible) Fock space representations of a and F  is an irreducible
representation of Cℓ.

This is clear, as they are both just graded rings of polynomials in infinitely many variables. But
furthermore, under the isomorphism F0 = F0, the monomial basis Ψλ of F0 corresponds to the
Schur polynomial basis sλ of F0.

S ≅F0 = C[a−1, a−2,…], S ∋ pi ↦ a−m.

ΛN(C[z−1] ⋅ zN−1) ↪ F0,

ΛN(C[z−1]zN−1) ≅C[x1,… ,xN ]SN ⋅ ∏
i>j

(x−1
i –x−1

j ),

z−m ↦ z−m ⊗ 1 ⊗⋯⊗ 1 + 1 ⊗ z−m ⊗ 1 ⊗⋯⊗ 1 +⋯+ 1 ⊗⋯⊗ 1 ⊗ z−m = (xm
1 +⋯+ xm

N) = pm.

F = Λ
∞
2 +∙V = ⨁

m∈Z

Fm = ⨁
m∈Z

Fm,



We have already expressed the action of ai ∈ a by elements in the Clifford algebra, via
ai ↦∑r+s=i ψrψ

∗
s, written in normal ordering, by ψrψ

∗
s for s > 0 and −ψ∗

sψr for s ≤ 0.
Our preliminary question is whether we can express the ψi and ψ∗

i  in terms of the ai. This is
certainly not possible, as the ai preserve the Fm while the ψi do not! However, we have other
natural operators, namely z, z−1 which are “shift” operators shifting the highest weight vectors
Fm ∋ Ψm ↦ Ψm+1 ∈ Fm+1. Our objective now is thus to define an action of z : Ψm ↦ Ψm+1,
commuting with all ai for i ≠ 0. Indeed, excluding a0, all of the Fm are isomorphic as a-modules,
and z, z−1 are the operators inducing this isomorphism.

Question: Express ψi, ψ∗
i  in terms of z and ai for i ∈ Z.

Let’s collect some facts we know about these operators.

Proof.
Let’s first give an example of how this works. The operator ψ−m−1 is already defined on Ψm, the
highest weight vector. First let us note that

Similarly, we can determine ψj on any monomial of strictly negative terms (i.e. all ij > 0)
a−i1 ⋯ a−irΨm, for j− i1 −⋯− ir = −m− 1.

Remark 71.

Since Ψm = v−m ∧ v−m+1 ∧…, the action of z is completely determined and well-defined.

1. [ai,ψi] = ψi+j.
2. [ai,ψ∗

j ] = −ψ∗
i+j.

Remark 72.
This can be seen by the action of ai ↔ zi as an abelian Lie algebra.

Lemma 73.

The maps ψj : Fm → Fm+1 are uniquely determined by:

1. Ψm+1 = ψ−m−1Ψm and ψrΨm = 0 for r ≥ −m.
2. [ai,ψj] = ψi+j.

ψ−m(a−1Ψm) = a−1ψ−mΨm − [a−1,ψ−m]Ψm,
= 0 − ψ−m−1Ψm,
= −Ψm+1.



□

Now if we want to determine say, ψ−m−2Ψm, we see that it will be something proportional to
a−1Ψm+1, and we can find this coefficient by applying a1 to both sides: we have

Although this proves that the maps are uniquely determined, it doesn’t give any explicit
formulas! Now we want to get explicit formulas.

These satisfy commutator relations

Idea: We want to write ψ(u) = Γ(u, ai)i∈Z. Suppose all the ai are commutative and we replace
ai with i ∂

∂a−i
 (the motivation is that [ai, aj] = iδi+j=0, which essentially acts by i ∂

∂a−i
). Then

[a−i, −] = ∂
∂ai

. So

which has a candidate solution

which is great if the ai commute, but not well defined if the ai do not commute.

Instead, let’s consider

which is a well-defined operator on Fm((u)) for any Fock space Fm. (This is indeed Laurent
series because only finitely many terms in the right sum act nonzero.)

So from the previous “highly incorrect” considerations, we constructed a well-defined operator!

ψ−m−2Ψm = ka−1Ψm+1,
a1ψ−m−2Ψm = kΨm+1,
ψ−m−1Ψm = kΨm+1 ⟹ k = 1.

Definition 74.

Let us write the formal generating series

ψ(u) = ∑
j∈Z

ψju
−j, ψ∗(u) = ∑

j∈Z

ψ∗
ju

−j.: :

[ai,ψ(u)] = uiψ(u), [ai,ψ∗(u)] = −uiψ∗(u).

∂
∂ai

Γ(u, ai) =
u−i

i
Γ(u, ai),

Γ(u, ai) = f(u) exp(∑
i≠0

ai

i
u−i),

exp(∑
i<0

ai

i
u−i) ⋅ exp(∑

i>0

ai

i
u−i),

Theorem 75.



□

Proof.
The proof is fairly easy; we only need to check the relations [ai,ψ(u)] = uiψ(u) and
[ai,ψ∗(u)] = −uiψ∗(u), and that Γ(u)Ψm = um+1Ψm+1 + smaller order terms. Let’s do the
commutator relations first. We need to check three separate cases: i = 0, i < 0, and i > 0.
For i = 0, the two exponentials commute, but the z±1 doesn’t commute. But using that
[a0, z] = z, we find that [a0, Γ(u)] = Γ(u) (and similarly for Γ∗(u)).
For i < 0, the um+1z term commutes, the first exponential commutes, but the last exponential
doesn’t; however, we already checked that [ai, −] acts by ∂

∂a−i
.

The same thing occurs for i > 0.
For the action on Ψm, clearly um+1z+Ψm = um+1Ψm+1, while the second exponential acts by
identity and the first exponential only contains positive powers of u, hence
Γ(u)Ψm = um+1Ψm+1 + um+2C[[u]]Fm+1. Now by the lemma and explicitly checking the
relations, we can verify the above expressions for ψ and ψ∗.

Oct 6
Boson-fermion correspondence and Jacobi-Trudy(-Giambelli)
identities
Recall that we have F =⨁m∈Z Fm, decomposition into Fock spaces. It’s helpful to keep the
following picture in mind:

Γ(u) = um+1z exp(∑
i>0

−
a−i

i
ui) ⋅ exp(∑

i>0

ai

i
u−i) = ψ(u),

Γ∗(u) = u−mz−1 exp(∑
i>0

a−i

i
ui) ⋅ exp(∑

i>0

−
ai

i
u−i) = ψ∗(u).



Each Fock space Fm is generated by the highest vector Ψm, via the a−n for n > 0. The a>0

move the vectors upwards. This module is cyclic over a−, and cocyclic with respect to a+

(everything can be taken to Ψm by a>0 elements). The fermion space is direct sum of such
things, and is graded with respect to energy. Now the height of an element in this picture is just
its degree with respect to energy, and the vertices belong to some parabola. Each Fock space
is an a-module, and there is an action of ψ(u) moving vectors clockwise, while ψ(u)∗ moves
things counterclockwise.

Now we have the operator ψ(u) =∑ ψnu
−n and is uniquely determined by the property that

ψ−m−1Ψm = Ψm+1 and ψNΨm = 0 for N > −m− 1, and the property that [ai,ψ(u)] = uiψ(u).
These two properties allow you to uniquely determine the action of ψ(u) between any two
adjacent Fock spaces. First you determine all of the ψ going to the highest vector, and then you
use the properties to go down in the target Fock space. So these are uniquely determined.

Theorem 76.

We have the following formulas. The notation ua0  denotes the action by um on Fm. The operator z
is the shift operator Fm → Fm+1.

ψ(u) = ua0zΓ−(u)Γ+(u); Γ−(u) = exp(∑
n>0

a−n

n
un),

Γ+(u) = exp(−∑
n>0

an

n
u−n).

ψ∗(u) = z−1u−a0Γ∗
−(u)Γ

∗
+(u); Γ∗

−(u) = exp(−∑
n>0

a−n

n
un),

Γ+(u) = exp(∑
n>0

an

n
u−n).

Example 77.

Consider ψ(u) : F−1 → F0 ↔ S. Let us consider the action of ψ(u) ⋅ Ψ−1. Well first, Γ+(u) acts by
identity because each of the a>0 act trivially. Next, we have action of Γ−(u). Since z commutes
with all a>0, we apply zΨ−1 = Ψ0 and ua0 = u0 = 1 on this space, so

On the other hand, we know that ψ(u) =∑ψ−nu
n, so the action is directly computed. Let

v = Ψ−1 = v1 ∧ v2 ∧ v3 ∧…. Then

ψ(u) : Ψ−1 ↦exp(∑
n>0

a−n

n
un)Ψ0.

:



Goal

Our goal is to use Γ+(u) to express any Schur polynomial sλ in the power sums p1, p2,….
Under the identification S ↔ F0, the Schur polynomial sλ for λ = (λ1 ≥ λ2 ≥ ⋯ ≥ λm ≥ 0)

corresponds to the monomial

where Ψ−m ∈ F−m. This is the coefficient of uλ1
1 uλ2−1

2 ⋯uλm−m+1
m  in ψ(u1)⋯ψ(um)Ψ−m.

Now

However, these terms don’t really commute… so we want all Γ+ on the right.

Observation.

Now recall that in the identification F0 ↔ S, Ψ0 ↔ 1 and a−n ↔ pn, the power sum. Furthermore,
the monomials correspond to Schur polynomials. In particular, the monomials above (
v−n ∧ v ↔ hn). So by comparing the actions of the exponential of the sum of a−n (converting
a−n ↔ pn) with the directly computed action of ψ(u)Ψ−1 via v−n ∧ − ↔ hn, the conclusion is that

Now if we apply ψ∗(u) : F1 → F0, then

On the other hand, ψ∗(u) =∑ψ∗
nu

−n, and each ψ∗
n works by deleting successive entries from

Ψ1 = v−1 ∧ v0 ∧ v1 ∧…. So ψ∗(u)Ψ1 is a sum of things corresponding to a one-column diagram
(times some appropriate power of u, up to sign), hence

Γ∗
−(u) ↔ e(u) = 1 + ∑

n>0

(−1)nenun ∈ S.

ψ(u)Ψ−1 = v0 ∧ v+ u ⋅ v−1 ∧ v+ u2 ⋅ v−2 ∧ v+….

exp(∑
n>0

pn

n
un) = 1 + ∑

n>0

hnu
n = h(u) ∈ S.

Remark 78.

In fact we’ve already seen this; taking the derivative of both sides, we get something that
indeed we’ve before.

ψ∗(u)Ψ1 = Γ∗
−(u)Ψ0.

sλ ↔v−λ1 ∧ v−λ2+1 ∧⋯∧ v−λm+m−1 ∧ vm ∧…
= ψ−λ1ψ−λ2+1 ⋯ψ−λm+m−1Ψ−m

ψ(u1)⋯ψ(um)Ψ−m = u−0
1 u−1

2 ⋯u−m+1
m Γ−(u1)Γ+(u1)Γ−(u2)Γ+(u2)⋯Γ−(um)Γ+(um)Ψ0 ∈ F0.



□

□

This is because this commutator is just an infinite sum of commutators [a−n, an] which is just a
scalar.

Additionally, note that [z, a0] = z.

Proof.
First we note that AkB = BAk + nCAn−1. Then we note that

Now we have that

Proof.
Just note that the exponential is the logarithm power series, also that [an, a−n] = n.

[∑
n>0

a−n

n
un, −∑

n>0

an

n
u−n] = scalar operator.

Lemma 79.

Suppose [A,B] = C, [C,A] = [C,B] = 0. Then eAeB = eCeBeA.

AnBk =
∞

∑
l=0

l!(n
l
)(k

l
)C lBk−lAn−l.

eAeB = −∑ AnBk

n!k!
= ∑ 1

n!k!
l!C lBk−lAn−lk!
l!2(n− l)!(k− l)!

= ∑
l

C l

l!
∑
k

Bk

k!
∑
n

An

n!
= eCeBeA.

Corollary 80.

Applying the previous lemma to the Γ, we find that

Γ+(u1)Γ−(u2) = Γ−(u2)Γ+(u1) ⋅ exp(−∑
n>0

1
n
( u2

u1
)) = Γ−(u2)Γ+(u1) ⋅ (1 −

u2

u1
).

Proposition 81.

sλ is the coefficient of uλ1
1 ⋯uλm

m  in

m

∏
i=1

exp(∑
n>0

pn

n
un
i)∏

i<j

(1 −
uj

ui

).



□

Proof.
We use the corollary to swap all of the Γ+ to the right, which gives us the product of Γ−(ui), but
with the extra factor of 1 − uj

ui
.

Now recall that exp (∑n>0
pn
n un

i ) = h(ui), while ∏i<j(1 − uj

ui
 is the Vandermonde determinant

(up to a monomial factor). Therefore the above expression equals
∏m

i=1 h(ui) ⋅ u−m+1
1 u−m+2

2 ⋯ ⋅ det((aij = um−i
j )mi,j=1). From this, we obtain:

Oct 11
(untwisted) Affine Kac-Moody Lie algebras

Let us start with any simple Lie algebra g over C, e.g. sln, son for n ≥ 5, sp2n for n ≥ 4,
exceptional ones, etc.

Fix an invariant inner product ⟨, ⟩ on g satisfying ⟨x, [y, z]⟩ = ⟨[x, y], z⟩; since g is simple, this
inner product is unique up to scalar.

Now consider the loop algebra g[z, z−1]. It’s called loop because it’s “equal” to TeLG, where
LG = {analytic maps S 1 → G} (not precisely; we should really take some completion of g[z, z−1]

, but it’s a dense subspace inside of TeLG, which is enough for our purposes). This algebra
g[z, z−1] is graded: the nth graded component is gtn, hence the grading is given by operator z∂z.
Hence g[z, z−1] =⨁n∈Z gzn is a graded Lie algebra, with [gzn, gzm] = gzn+m.

As usual, we care about central extensions of this Lie algebra.

Central extensions of g[z, z−1]

Theorem 82 (1st Jacobi-Trudy identity).

sλ = det((hλi+j−i)
m
i,j=1) = det .

⎛⎜⎝ hλ1 hλ1+1 hλ1+2 … hλ1+m−1

hλ2−1 hλ2 hλ2+1 … hλ2+m−2

⋮ ⋮ ⋮ ⋱ ⋮
hλm−m+1 hλm−m+2 hλm−m+3 … hλm

⎞⎟⎠Exercise 83.

You can similarly express sλ as a determinant of the elementary symmetric functions (using the ei
instead of the hi) as well. The only difference is you transpose the Young diagram. The proof is the
same, but you replace ψ by ψ∗.



□

□

Recall that central extensions are classified by H 2(g[z, z−1]), so we want to compute this
cohomology group. We have the Chevalley complex

and it carries an action of g[z, z−1] which acts trivially on cohomology. In particular, g acts trivially
on the cohomology.

Proof.
First, g ↷ H 2 trivially iff we can lift any ω ∈ H 2 to some g-invariant cocycle in C 2. Meanwhile,
we have an embedding g[z, z−1]∗ ↪ Λ2g[z, z−1]∗, so the coboundaries are precisely a copy of
g[z, z−1]∗. But g[z, z−1]∗ =⨁Z g contains no g-invariants, hence lifting is unique (there are no
Ext between this module and the trivial module). It follows that g-invariant cocycles precisely
have the above form.

This still consists of infinitely many parameters. We will whittle it down.

Proof.
We have

Since ⟨, ⟩s are totally antisymmetric, all of the ⟨, ⟩ equal the same constant up to sign(note that
⟨[x1,x3],x2⟩ = ⟨x1, [x3,x2]⟩ = −⟨x1, [x2,x3]⟩ = −⟨[x1,x2],x3⟩), hence the above expression is
equal to some constant times γp,n+m + γm,p+n + γn,m+p, and choosing the constant to be
nonzero we have that this is zero.

C ∙(g[z, z−1]) = Λ∙(g[z, z−1]∗)

Proposition 84.

Any cohomology class from H 2(g[z, z−1]) is represented by a cocycle of the form ∑m≠n γm,nωm,n

where γm,n = −γn,m ∈ C and ωm,n(xzk, yzl) = δm=kδn=l⟨x, y⟩, i.e., a g-invariant cocycle.

Proposition 85.

We have γn,m+p + γm,p+n + γp,n+m = 0.

0 = dω(x1z
n,x2z

m,x3z
p),

= ω([x1,x2]zn+m,x3z
p) − ω([x1,x3]zn+p,x2z

m) + ω([x2,x3]zm+p,x1z
n),

= γn+m,p⟨[x1,x2],x3⟩− γn+p,m⟨[x1,x3],x2⟩+ γm+p,n⟨[x2,x3],x1⟩.

Corollary 86.

γn,−n = nγ1,−1 = nγ and γm,n = 0 otherwise. In particular, dimH 2(g[z, z−1]) = 1.



□

Proof.
We have γn,s−n + γm,s−m = γn+m,s−n−m ⟹ γ0,s = 0 for all s. By induction,
−(s− n)γ1,s−1 = γn,s−n = n ⋅ γ1,s−1 ⟹ (s− n)γ1,s−1 = −nγ1,s−1 ⟹ s ⋅ γ1,s−1 = 0, hence
γ1,s−1 = 0 for all s ≠ 0. This implies the result.

We finally reach our most important object in this course.

Definition 87 (affine Kac-Moody Lie algebra).

Any central extension of g[z, z−1] has the form

Equivalently,

Therefore, we define the (untwisted) affine Kac-Moody Lie algebra ĝ associated to a simple
(finite-dimensional) Lie algebra g to be the unique (up to rescaling) nontrivial central extension of
the loop space g[z, z−1].

0 → Cc → ĝ → g[z, z−1] → 0, [xzn, yzm]ĝ = [x, y]gzn+m + n ⋅ δn+m=0 ⋅ ⟨x, y⟩ ⋅ c.

[x(z), y(z)]ĝ = [x(z), y(z)]g +Resz=0⟨x(z), dy(z)⟩ ⋅ c.

Example 88.

Let g = sl2. We may consider ŝl2 as a bigraded Lie algebra, with one grading coming from z∂z, and
the other grading coming from adh, as illustrated below. Then ŝl2 is generated by
h, c, e, fz, f, ez−1. Why is that?

Anything to the right can be generated by e and fz. For example, hz = [e, fz] and fz2 = [fz,hz].
Anything to the left can be generated by f and ez−1 by a similar procedure.
Note that there are two copies of sl2 here which indeed generate the whole thing, illustrated in



Oct 13
Structure and (some) representations of ŝl2

Recall the construction from Definition 85 (affine Kac-Moody Lie algebra): to a complex
semisimple Lie algebra g, we can assign a Z-graded Lie algebra ĝ (called the affine Kac-Moody
Lie algebra), which is a central extension of the Loop algebra g[z, z−1]:

In fact, the inner product ⟨, ⟩ is defined only up to a scalar; there are two ways to rectify this,
either defining it to be the Killing form on g, or by normalizing ⟨hi,hi⟩ = 2 (i.e., the square of any
h of a principal sl2-triple is 2).

Question: What is Der ĝ?

So we might want to study Der ĝ/ad g̃ = H 1(ĝ, ĝ). We have

So any class in Der ĝ/ad ĝ is represented by a g-invariant derivation. Moreover, Der ĝ is Z-
graded by [z∂z, −], since ĝ is graded.

brown and orange. The relations are very similar to the relations coming from finite-dimensional
Lie algebras.
This is very similar to the case of semisimple Lie algebras: we have the Cartan subalgebra in
purple, n−, n+, illustrated in green and red, and we can define all the usual stuff such as roots,
simple roots, Chevalley generators, etc., which we will discuss next time.

ĝ = Cc⊕ g[z, z−1], [c, −] = 0, [x(z), y(z)]ĝ = [x(z), y(z)]g[z,z−1] +Resz=0⟨x(z), dy(z)⟩c.

Remark 89.

For a finite-dimensional simple Lie algebra, Der g = ad g since Der g/ad g = H 1(g, g) = 0

(because the adjoint representation is a nontrivial irreducible representation, recall from Sep 11).

Der ĝ

Lie algebra

/ad ĝ

ideal

= H 1(ĝ, ĝ) ↶
trivially

g ⊂ ĝ.  

Proposition 90.

Der ĝ/ad ĝ = W = C[z, z−1]∂z.



□

Proof.
Suppose D ∈ Der ĝ is g-invariant, with degD = n homogeneous. Then for x ∈ g,

This means that any derivation in Der ĝ is uniquely determined up to a constant, and
furthermore is proportional to zn+1∂z.

D(xzr) = αrxz
r+n, since D is g − invariant,

D([xzr, yzs]) = [D(xzr), yzs] + [xzr,D(yzs)],
⟹ αr+s[x, y]zr+s+n = (αr + αs)[x, y]zr+s+n ∀x, y ∈ g,

⟹ αr+s = αr + αs.

Definition 91 (extended affine Kac-Moody Lie algebra).

It is sometimes useful to work with a somewhat bigger algebra, the extended affine Kac-Moody
algebra g̃, defined by

We will often denote this extra element by d = z∂z.

0 → ĝ → g̃ → C{z∂z} → 0.

:

Example 92.

Let’s examine ŝl2. As we have already seen in Oct 11, we have the Cartan decomposition

So ŝl2 is a bi-graded algebra, with gradings given by z∂z and adh. Recall the picture from Oct 11:

ŝl2 = n̂+ ⊕ ĥ ⊕ n̂−,

ĥ = Span{h[0], c},
n̂+ = Ce[0] ⊕ zsl2[z],
n̂− = Cf[0] ⊕ z−1sl2[z−1].



Generators of ŝl2

Consider e1 = e[0], e0 = f[1], f1 = f[0], f0 = e[−1], h1 = h[0], and h0 = c− h[0]. Then
{e1, f1,h1} and {e0, f0,h0} form two sl2-triples. (You can easily check the commutator relations.)
Now note that [e1, f0] = 0 = [e0, f1].
We also have analogues of Serre relations, easily seen by looking at the picture above (each
commutator pushes it one step up or one step down, but there are only three levels):

We do have some for fs, but in fact, we don’t need other relations and obtain ŝl2 already
through these few relations (though the proof of this will be postponed).

Invariant symmetric bilinear form on ŝl2

Question: What is the Casimir element here?
The problem is that this algebra is infinite-dimensional, so if you try to write the Casimir
element, it will be an infinite sum, hence not an element of the universal enveloping algebra.
Darn!
What we want to write is ∑r∈Z e[r]f[−r] + f[r]e[−r] + 1

2 h[r]h[−r]. But since we only consider
category-O representations, n̂+ acts locally nilpotently, so anything with positive terms on the
right will act nilpotently.
While we cannot make this element a finite sum, we can make it well-defined on every
category-O representation, and hence can view it as an element of the completion

Then we have a principal grading given by 2z∂z + 1
2 adh, which gives a grading by the diagonals

from top left to bottom right.

[e1, [e1, [e1, e0]]] = 0,
[e0, [e0, [e0, e1]]] = 0.

Definition 93.

Let us define the invariant symmetric bilinear form on ŝl2:

⟨c, 0⟩ = 0 (therefore the form is degenerate)
⟨e[r], f[−r]⟩ = 1

⟨h[r],h[−r]⟩ = z.

O ∋ M ↶ Ũ(ŝl2) = lim
∞←n

U(ŝl2)/znsl2[z].



So our goal is to commute the terms so the positive terms are on the right. We obtain

The problem: S is not central!
The good news: [S,x[r]] = 0 modulo linear terms.

The proof is deferred to next class, since we ran out of time!

From this, it will follow that Der ŝl2 is generated by inner derivations and the Witt algebra
W = C[z, z−1]. It will follow that we can recognize z∂z = [ S

−2(c+2) , −] (after localizing), which will

turn outer derivations to inner ones as well.

The true Casimir will be S + 2(c+ 2) ⋅ z∂z ∈ Ũ(s̃l2), and this does indeed enjoy all of the
properties of a true Casimir element.

Oct 16
Structure and representations of ŝl2

Let us recall what we know about this affine Kac-Moody algebra. It is defined by

In particular there is a basis given by c and e[r], f[r],h[r] for r ∈ Z. We have the relations

We have the Cartan decomposition ŝl2 = n̂− ⊕ ĥ ⊕ n̂+, where

S = (e[0]f[0] + f[0]e[0] +
1
2
h[0]2)+ 2∑

r>0

(e[−r]f[r] + e[−r]e[r] +
1
2
h[−r]h[r]).

Proposition 94.

[S,x[r]] = −2(c+ 2)r ⋅ x[r].

0 → Cc → ŝl2 → sl2[z, z−1] → 0.

[c, −] = 0 = [e[r], e[s]] = [f[r], f[s]]
[h[r],h[s]] = 2rδr+s=0c

[e[r], f[s]] = h[r+ s]
[h[r], e[s]] = 2e[r+ s]
[h[r], f[s]] = −2f[r+ s]

n̂− = Cf[0] ⊕ z−1sl2[z−1],

ĥ = Span{h[0], c},
n̂+ = Ce[0] ⊕ zsl2[z].



Let’s distinguish some generators which play the role of Chevalley generators here. The natural
choice is e1, e0 to generate n̂+ and f1, f0 to generate n̂−, along with h1,h0 to generate ĥ. We
define e1 = e[0], f1 = f[0], h1 = [e1, f1] = h[0], and e0 = f[1], f0 = e[−1], and
h0 = [e0, f0] = c− h[0]. Each triple (ei, fi,hi) generate an sl2-triple.

In this way, we can regard ŝl2 as a Lie algebra constructed from a Cartan matrix, just as in the
finite-dimensional case. For aij ∈ Z with i, j ∈ {0, 1}, let

This sort of affine Kac-Moody Lie algebra generalizes. For any simple g, we can make the Lie
algebra ĝ = Cc⊕ g[z, z−1]. We want to split the algebra

into a Cartan decomposition.

[hi, ej] = aijej

[hi, fj] = −aijfj

[ei, fj] = δijhi

So the Cartan matrix in our case is

which is a degenerate Cartan matrix (this is in stark contrast to the finite-dimensional case,
where the Cartan matrix is symmetrizable and the symmetrization is positive definite!). But
we can still determine a Lie algebra from a Cartan matrix by imposing the above relations
and the Serre relations:

As we have already seen, these relations already hold for ŝl2! For i ≠ j, then 1 − aij = 3,
and this is indeed the case. A bit later, we will see that ŝl2 is indeed determined by these
relations.

A = (aij) = ( ),2 −2
−2 2

(ad ei)1−aij ⋅ ej = 0 = (ad fi)1−aij ⋅ fj.

:

⋯⊕ z−1g ⊕ (g ⊕ Cc) ⊕ zg ⊕ z2g ⊕⋯

Definition 95 (Cartan decomposition of affine Kac-Moody Lie algebra).

Let g be a simple finite-dimensional Lie algebra. The Cartan decomposition of ĝ is as follows. We
define

where we view h, n+, n− ⊂ g ⋅ 1 ⊂ g[z, z−1].

ĥ = h ⊕ Cc,
n̂+ = n+ ⊕ zg[z],
n̂− = n− ⊕ z−1g[z−1],

:
:
:



If we do this sort of Cartan decomposition, we want to determine the Chevalley generators, i.e.
positive simple roots. We define the simple roots to be ei = eαi

[0] ∈ n+ ⊂ g. We can also define
e0 = z ⋅ fθ where θ is the maximal root; this is one extra root which lives in z ⋅ g and together
with the simple roots, generates all of n̂+. For example, in g = sln we have

e0 = z ⋅ fθ = , while f0 = . This is a Lie algebra which corresponds

to the extended system of simple roots (i.e., all of the simple roots, combined with negative of
the maximal root (alternatively, the lowest root)). You can still regard this as a system of simple
roots! Then after that, we can write the Cartan matrix and the corresponding relations.

Category O for ĝ

Let d : ĝ → ĝ be the derivation given by z∂z.

:

⎛⎜⎝0

⋱
z 0

⎞⎟⎠ ⎛⎜⎝0 z−1

⋱
0

⎞⎟⎠Definition 96 (category-O for affine Kac-Moody Lie algebra).

A ĝ-module M  is in category O if:

1. it is d-graded (i.e. extends to g̃-module).
2. n̂+ acts locally nilpotently, i.e., for all v ∈ M , there exists N  such that ei1 ⋅ ⋯ ⋅ eiNv = 0.

3. ĥ acts semisimply, i.e. M =⨁
μ∈ĥ∗ Mμ such that for all h ∈ ĥ and v ∈ Mμ, then hv = μ(h)v.

4. it is finitely generated, which implies (see Proposition below) that the principal grading on M
is upper bounded, and the graded components are finite-dimensional.

Remark 97.

There are many versions of category O if we modify (4), but we’ll work with essentially the
“smallest” version, so that our category is not too big.

Definition 98 (principal grading on ĝ).

The principal grading on ĝ is given by ad ĥ = 1
2 adh+ (m+ 1)ad d, where [ĥ, ei] = ei, and m is

the height of the maximal root θ (e.g., if θ =∑Δ niαi, then m =∑ ni). (Here h is the element in
h such that [h, ei] = 2ei.)

:

:

Proposition 99.



□

Proof.
Let v1,… , vk be the generators of M. Then there exists N1 such that ei1 ⋯ eiN1

v1 = 0. Suppose
N2 is the biggest degree of vi with respect to ĥ. Then N = N1 +N2 satisfies this condition.

M =⨁Mk

Note that c|Mk
= k ⋅ id.

Roughly speaking, O =⨁kOk, where Ok is the category of representations of the level k.

For finite-dimensional g, category O enjoys some nice properties:

The point of all this is that finite-dimensional modules are not the correct objects to study.
Instead it’ll be something called integrable modules.

Let M ∈ O. Then M =⨁n∈Z Mn, where ĥ|Mn
= n ⋅ id. Furthermore, there exists N ∈ Z such that

for all n > N , Mn = 0.

all objects have finite length.
it contains finite-dimensional g-modules.
Unfortunately, both of these properties fail for ĝ. The second property has a simple
example: set k = 0, then consider the evaluation representation g[z, z−1] → g by sending
z ↦? ∈ C, specializing z to some complex number (say 1). Then g → End(V ) for some
finite-dimensional V , which fails the condition that n̂+ acts locally nilpotently. As a concrete
example, consider g = sl2 and V = C2 the tautological representation. Then
… fefefefefe ⋅ v ≠ 0 so long as ev ≠ 0.

Definition 100 (integrable module).

A ĝ-module in category O is integrable if it is integrable with respect to all copies of sl2 generated
by ⟨ei, fi,hi⟩ (i.e., fi act locally nilpotently). (Recall that a representation of sl2 is integrable if it
is a (possibly infinite) direct sum of finite-dimensional sl2-modules; however, note that these copies
of sl2 intertwine in such a way that as a ĝ-module, the representation does not decompose as a
direct sum of finite-dimensional ĝ-modules.)

Example 101.

For ĝ = ŝl2, we are looking for integrable quotient of a Verma module
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Sugawara construction for ŝl2 and applications to
category O
Invariant forms on g[z, z−1]

Let ⟨, ⟩ be an invariant scalar product on g. Then we can extend in the obvious way to an
invariant scalar product ⟨x(z), y(z)⟩ ∈ C[z, z−1]. Then we can multiply by any differential form
F(z) dz, and we obtain a form

So this suggests the construction of some element in the universal enveloping algebra, i.e. the
“Casimir” element in U(g[z, z−1]).

When F(z) = z−n−1, then ⟨x[r], y[s]⟩n = δr+s=n⟨x, y⟩. For any basis {xa} of g and {xa} the dual
basis, the form ⟨, ⟩n suggests the element

which is not an element of the universal enveloping algebra, but is an element of
˜U(g[z, z−1]) = lim∞←N U(g[z, z−1])/U(g[z, z−1])zNg, and has a well-defined action on category O.

Now we want this to have an integrable quotient with respect to both generating sl2-triples,
⟨e0, f0,h0⟩ and ⟨e1, f1,h1⟩. The latter set is the “usual” set and the condition that it’s integrable
with respect to this set implies that λ ∈ Z≥0; the integrability on the other set shows that
h0vλ,k = (k− λ)

≥0

vλ,k, so k− λ ∈ Z≥0.

In particular, there is a unique integrable module of level 0 (namely the trivial module), and two
irreducible integrable modules of level 1, corresponding to λ = 0, 1.

M(λ, k) = Indĝ

ĥ⊕n̂+
Cλ,k

c|Cλ,k=k⋅id, h∋h|Cλ,k=λ(h)

= U(n̂−)vλ,k.




x(z), y(z) ↦ Resz=0⟨x(z), y(z)⟩F(z) dz ∈ C.

∑
r+s=n

∑
α

xα[r]xα[s],

Lemma 102.

∑α xα[r]xα[s] =∑α x
α[s]xα[r].



□

Proof.
The difference is an element of g[r+ s] which commutes with g[0]. But since g is simple, there
are no such elements.

This implies that we can write

There is one huge problem: this element is not central.

Sn = ∑
r+s=n, s>0

∑
α

xα[r]xα[s] + ∑
r+s=n, s≤0

∑
α

xα[s]xα[r].:

Example 103.

Let g = sl2. We’ll show that S0 as constructed is not central. Then

We can check commutativity on the generators of ŝl2. First, [S0,x[0]] = 0, so that is not a problem.
But

So [S0,h[1]] = −4h[1], which is nonzero. We also know that [S0,x[m]] ∈ sl2[z, z−1], i.e.
adS0 : sl2[z, z−1] → sl2[z, z−1] is an ŝl2-invariant derivation. But we already checked this before
— then it must come the Witt algebra, and since it is level 0, it must be proportional to z∂z.

S0 = e[0]f[0] + f[0]e[0] +
1
2
h[0]2 + 2∑

r>0

(e[−r]f[r] + f[r]e[r] +
1
2
h[−r]h[r]).

[S0,h[1]] = − 2e[1]f[1] + 2e[0]f[1] + ef[1]e[0] − 2f[0]e[1]

+ 2∑
r>0

−2e[−r+ 1]f[r] + 2e[−r]f[r+ 1] + 2f[−r+ 1]e[r] − 2f[−r]e[r+ 1]

2(−2e[0]f[1]+2f[0]e[1])

=− 4h[1].



Proposition 104.

[S0, −] = −4z∂z. Similarly, we can define [Sn, −] = −4zn+1∂z.

Corollary 105.

The elements {Sn ∣ n ∈ Z} generates a central extension of the Witt algebra W ⊂ ˜U(g[z, z−1]).

(Note that the center of the ˜U(g[z, z−1]) is trivial, although we have not showed this before.) This
implies that [[Sn,Sm], −] generates a copy of V ir, the Virasoro algebra, since [Sn,Sm] = Sn+m+?

and thus gives us the central extension.



For ŝl2 we have [S0,h[1]] = −2(c+ 2)h[1].

Category O

Proposition 106.

[S0, −] = −2(c+ 2)z∂z = −2(c+ 2)[d, −]. More generally, [Sn, −] = −2(c+ 2)zn+1∂z.

Therefore we have an embedding V ir ↪ Ũ(ŝl2)].

:

Remark 107.

The level c = −2 is special, and called critical. This is because all Sn become central in

Ũ(ŝl2)/(c+ 2).

Theorem 108 (Casimir elememt).

Ĉ = S0 + 2(c+ 2)d ∈ Ũ(s̃l2) is central. We call this the Casimir element.:

Definition 109 (Verma module).

Let k ∈ C. Then Ok ∋ M(λ, k) the Verma module generated by vλ,k subject to conditions
n̂+vλ,k = 0, h[0]vλ,k = λvλ,k, and cvλ,k = kvλ,k.

Definition 110 (highest weight module).

V  is a highest weight module of level k if V = M(λ, k)/− for some λ.

Proposition 111.

Any module M  from Ok has a finite filtration M ⊃ M0 ⊃ ⋯ ⊃ MN  such that Mi/Mi+1 is highest
weight for each i.

Theorem 112.



□

Proof.
It’s sufficient to do this for Verma modules M(λ, k). Then we just need to show that there are
finitely many singular vectors. The reason is that if there is a singular vector, then the
eigenvalue for Casimir is the highest weight.

Then when you go down the Verma module, the eigenvalue of the second term 2(c+ 2)d in the
Casimir element increases, while if we have a singular vector then the value of the first term S0

is always just the value of the Casimir on the highest vector for s̃l2. So these are bounded
below and there are finitely many weight spaces. We’ll finish the proof next class.
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Generalities about category O (in the infinite-dimensional
setting)

Proof. First, it’s sufficient to show that Verma modules M(λ, k) have finite length; this is
because every module from category O can be filtered in such a way that all subsequent
quotients are highest weight modules (i.e., quotients of Verma modules).

Next, suppose that some Verma module M(λ, k) is infinite length, i.e. that for all N , there exists
a chain of strict inclusions M(λ, k) ⊋ M1 ⊋ M2 ⊋ ⋯ ⊋ MN . Consider the weight decomposition
M(λ, k) = U(n̂−) ⋅ vλ,k: we define

To do this, we need to make some choice, to determine the action dvλ,k. In this case we declare
dvλ,k = 0. From this we see that

Let Q ∋ k < −2 or k ∉ Q. Then any object of Ok has finite length.

Lemma 113.

Ĉ|M(λ,k) is constant.

Theorem 114.

Let C ∋ k < −2 (where a < b ⟺ b− a ∈ Q>0). Modules from Ok have finite length.

M(λ, k)μ,m = {v ∈ M(λ, k) ∣ h[0]v = μv, dv = mv}.:

d(∏ e[ri]f[si]h[pi]vλ,k) = ∑(ri + si + pi)(−),



□

and thus that the weight spaces are finite-dimensional. So the sequence of inclusions also
induces a sequence of inclusions on each weight space.

Now consider the quotients Mi/Mi+1, and choose some highest vector (not necessarily
generating the quotient) vi annihilated by n̂+, which always exists. Lift this vi to some
ṽi ∈ M(λ, k). All of the ṽi are linearly independent. This means that there exist infinitely many
pairs (μ,m) such that (Mi/Mi+1)μ,m ∋ vi where n̂+vi = 0. But let us consider the possible
values for μ,m. First, m ≤ 0, and μ ∈ λ+ 2Z. If m = 0 then μ ∈ λ− 2Z≥0.

Now we need the following lemma. Let Ĉ = S0 + 2(k+ 2)d be the Casimir element. On the
Verma module M(λ, k), it acts by the scalar λ(λ+2)

2 . The proof is that it acts by this scalar on the
highest vector vλ,k, and it commutes with everything with U(n̂−) which also generates
everything in M(λ, k).

Next, we also need another lemma. Consider the action of Ĉ ⋅ vi of some highest vector in a
quotient. Then Ĉvi = ( μ(μ+2)

2 + 2(k+ 2)m)vi. The proof is postponed to next time.

These two prove the theorem for rational k.

General setting

Now let’s discuss category O in general. Let L be a (possibly infinite-dimensional) Lie algebra
which is Z-graded, i.e. L =⨁n∈Z Ln, such that L0 is abelian, and dimLn < ∞ for all n. This
applies to all Lie algebras we have seen so far, including the Heisenberg algebra a, the Virasoro
algebra V ir, and the Kac-Moody algebras ĝ. In this general situation we can always define a
Verma module M(λ) = U(L<0)vλ corresponding to any character λ ∈ L

∗
0. This module is still Z

-graded (only negative/nonpositive components), and the dimensions of the graded
components are finite. So we can do the usual business with category O.

Let’s describe all simples in O. In the usual case (semisimple Lie algebras), a simple module is
a quotient of a Verma module, and there is a minimal quotient. Here, any proper submodule of
M(λ) is contained in M(λ)<0, the strictly negative part of M(λ), hence the sum of all proper
submodules is still a proper submodule (contained in M(λ)<0).

The main problem is to find the Poincare series/characters of L(λ) with respect to L0 and d.
What we expect is that 1) for ĝ, for integrable L(λ) there will be some analogue of Weyl

:

Proposition 115.

There exists a unique maximal proper submodule N(λ) ⊂ M(λ). Thus, all simple modules in O are
of the form M(λ)/N(λ) = L(λ).:



character formula, such that Jacobi and Macdonald identities are some particular cases, and 2)
(we will continue with this next time) something even more interesting for V ir. The problem with
V ir is that it is not a Kac-Moody algebra, and it is not determined by a Cartan matrix, so much
less is known here. But what we have seen is that any affine Kac-Moody algebra contains some
V ir, so representations of it arise everywhere, making it “universal” in some sense. So it is
really important. So we cannot say “integrable” for V ir because there is no Lie group, but we
can distinguish some class of modules (called minimal Virasoro modules) which share many
properties with integrable modules.
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Category-O representations of ŝl2

In fact, most of what we say today is true more generally for ĝ, but it’s easier to first just
consider the case of g = sl2.

First, we need to finish the finite-length property for category-Ok modules for
{k ∈ Q, k+ 2 < 0} or {k ∈ C ∖ Q} (recall Theorem 112). We reduced this to the study of
Verma modules M(λ, k). What we are checking is that there are finitely many possibilities for
the highest vector in M(λ, k). The highest vector has to satisfy the property that its eigenvalue
under the Casimir is the same. So there exists a highest vector of weight (μ, −n) (where μ is
the eigenvalue of h[0] and −n is the eigenvalue of d) in some subquotient of M, for μ = λ+ 2m

and m ∈ Z and n ∈ Z≥0. We were checking that there were finitely many possibilities for (μ, −n)

to have the same eigenvalue under the Casimir. Now the eigenvalue of the Casimir
S0 + 2(k+ 2)d is λ(λ+2)

2 , while the eigenvalue on the highest vector (of weight (μ, −n)) is
μ(μ+2)

2 − 2(k+ 2)n. Setting these equal and writing μ = λ+ 2m, we have

Here λ and k+ 2 are fixed. So we have two cases: first, in the m− n plane, the equation is a
parabola, and we have finitely many integer points with n ≥ 0. The second case is if k+ 2 ∉ Q.
Let’s split C = Q ⊕ Q⊥ as vector spaces (yes… this is weird). Then k+ 2 = k1 + k2, and
λ = λ1 + λ2, with k1,λ1 ∈ Q and k2,λ2 ∈ Q⊥. Then we find that

Since both of these are nonzero, we deduce that m should be proportional to n. But then the
line m = cn for some c, intersects the parabola at finitely many points (no matter which way the
parabola is facing). So either way, we see that there are only finitely many possibilities.

Characters

λ+ 2λ2 = λ2 + 2λ+ 4mλ+ 4m2 + 2m− 4(k+ 2)n,
⟹ 0 = 4mλ+ 4m2 + 2m− 4(k+ 2)n.

4mλ2 = 4nk2.



Suppose g is a finite-dimensional semisimple Lie algebra, and V  is a finite-dimensional g-
module. Recall that if V  is finite-dimensional, then V  is integrable, i.e. it integrates to a G-
representation, where G is the connected, simply-connected Lie group corresponding to g. Let
π : G → GL(V ) be this homomorphism. Then we define chV (g) = TrV (π(g)). This has the usual
property that it’s conjugation-invariant: chV (g) = chV (hgh−1) for all h, g ∈ G. So this defines a
function on conjugacy classes of G. On the other hand, almost all conjugacy classes (i.e.,
complement of union of these conjugacy classes forms a set of measure 0, or alternatively
viewed as an algebraic group, the complement is a proper Zariski-closed subset) have a
representative in the maximal torus (if G is compact, it’s true for every conjugacy class). In fact,
the representatives in the maximal torus form a single W -orbit, where W = NG(T )/T  is the
Weyl group. So this means that the character is uniquely determined by its values on the
maximal torus.

We want something similar in the infinite-dimensional case. The question is what to do,
because we don’t have the Lie group, so we have an issue trying to define the character as a
trace of the element in the Lie group. The idea is that we still have a notion of a function on the
torus (though maybe not the whole “group”).

Let us return to the finite-dimensional case. Suppose that we have the decomposition
V =⨁μ∈h∗ Vμ, of V  into h-eigenspaces, so that for h ∈ h, we have h|Vμ

= μ(h) ⋅ id. Then
(essentially by definition), we have

Let’s regard tμ as a formal symbol, satisfying that tμ1 ⋅ tμ2 = tμ1+μ2 .

This means that to determine the character, it suffices to understand the decomposition of V
into h-weight spaces, which is indeed easy to generalize to the infinite-dimensional case.

Suppose

Then we can write down the character chM(t) as an infinite sum, but it will still be well-defined.

:

Proposition 116.

chV (g) is unique determined by the values chV (t) for t ∈ T , and furthermore chV |T ∈ C[T ]W .

Proposition 117.

chV (t) =∑μ∈h∗ tμ ⋅ dimVμ.

M = ⨁Mμ, dimMμ < ∞.



In particular, we can write down the character of a Verma module (in the finite-dimensional
case).

Now consider (possibly infinite-dimensional) Lie algebra L with the usual assumptions: Z-
graded, so that L =⨁n∈Z Ln, and L0 is abelian. Then we can define the character chM(t, q) of
any graded L-module M such that M =⨁n∈Z Mn and Mn =⨁μ∈L∗

0
Mμ,n, L0 acts semisimply,

and the joint-eigenspaces Mμ,n are finite-dimensional. The variable t comes from the “torus” L0

action (i.e. μ), and the q comes from the Z-grading (i.e. n). Thus we define:

Example 118 (character of a Verma module).

Let g be a finite-dimensional semisimple Lie algebra and M = M(λ) = U(g) ⊗U(b+) Cλ be the
Verma module, where b+ = n+ ⊕ h. Here, n+ acts on Cλ by 0, while h acts on Cλ by λ : h → C.
Then by PBW, this module is a free U(n−)-module generated by a highest-weight vector vλ. So the
character is given by

To compute this, we just need to know the action of the torus on the space of generators (namely n−

). Let Δ+ denote the positive roots. Recall that n− =⨁α∈Δ+
fα, and each fα gives rise to t−α. So

we get that

Now, recall that Verma modules span the Grothendieck group of the category O, so we can compute
the characters of all of the modules as linear combinations of the characters of the Verma modules
(as computed here).

chM(λ)(t) = tλ ⋅ chU(n−)(t)
PBW
= tλ ⋅ chS(n−)(t).

chM(λ)(t) = tλ ⋅ chS(n−)(t),

= tλ ⋅ ch⨂α∈Δ+
C[fα](t),

= tλ ⋅ ∏
α∈Δ+

chC[fα](t),

= tλ ⋅ ∏
α∈Δ+

1
1 − t−α

.

Definition 119 (character).

Let L and M  be as above, i.e., L is Z-graded with L0 abelian, M  is Z-graded and L0 acts
semisimply, with finite-dimensional joint-eigenspaces. Then we define

chM(t, q) = ∑ (dimMμ,n) ⋅ tμqn.:
μ∈L∗

0
n∈Z



In other words, to define this, we consider an extended Lie algebra

where the adjoint action of d gives the Z-grading, and we consider L̃-modules (i.e., graded
modules over L). We have a bigger abelian algebra L̃0 = Cd⊕ L0, and we decompose the
module with respect to the action of L̃0, and require that the weight spaces of L̃0 (which are just
the joint-weight spaces of L0) should be finite-dimensional.

0 → L → L̃ → Cd → 0,

□

Example 120.

Let ĝ = Cc⊕ g[z, z−1] be a nontrivial central extension. Let g̃ = Cd⊕ ĝ.

Proof.
It’s sufficient to check this for Verma modules M(λ) = U(g̃) ⊗U(h+Cc+Cd+n+) Cλ. As a vector space
with an action of the extended Cartan algebra h̃ = h + Cc+ Cd, this is just U(n̂−) ⋅ vλ,k (where k is
the eigenvalue of the central element c). We just need to show that the weight spaces in U(n̂−) have
finite dimension. But this is indeed the case, since n̂− is negatively graded with respect to some
linear combination of the multi-grading. (In other words, we can take some element from h̃ such
that all eigenvalues with respect to this element are strictly negative integers, and this means that all
of the graded components with respect to this particular element are already finite-dimensional, and
hence all of the weight spaces in U(n̂−) are finite-dimensional.

In fact, we can even compute this character. It will be

The first product corresponds to elements of the form fα ⋅ z?, the second to eα ⋅ z?, and the third to
hi ⋅ t?.

Proposition 121.

Any category-O module M ∈ O(g̃) has a well-defined character chM(t, q).
Namely, let us define

Mμ,n = {v ∈ M ∣ h[0]v = μ(h)v∀h ∈ h, dv = −nv}.

We’ll define the character by:

chM(t, q) = ∑ (dimMμ,n) ⋅ tμqn.

chM(λ)(t, q) = tλ ⋅ ∏
α∈Δ+

1
∏∞

n=0(1 − qnt−α)
∏
α∈Δ+

1
∏∞

n=1(1 − qntα)
∏

hi basis for h

1
∏∞

n=1(1 − qn)
.
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O for ŝl2 (then generalizing to ĝ)
Verma module M(λ, k)

Recall that M(λ, k) = U(ĝ) ⊗
U(b̂+)

Cλ,k = U(g̃) ⊗
U(b̃+)

Cλ,k,0, where b̂+ = n̂+ + ĥ, Cλ,k = Cλ,k,0 is

the one-dimensional b̂+-representation where n̂+ acts by 0 and h ∈ h acts by λ(h), c acts by k,
and d acts by 0. (Recall that b̃+ = b̂+ + Cd.) As a vector space,

where n̂− = n− ⊕ z−1g[z−1]. Now n̂− has a natural basis coming from the root basis in n−, h, n+

(although we will need to choose some particular basis of h but this doesn’t really matter). Let

Then we have a basis of n̂− given by fα[r] for r ≤ 0 and eα[r],hi[r] for r < 0.

The weight decomposition of M(λ, k) is given by

The character is

In category O, you want to compute the character of any irreducible object. But in the
Grothendieck group (K-group), the classes of Verma modules form a basis, so the class of any
object can be expressed as a linear combination of the classes of Verma modules. The
difference between the finite-dimensional semisimple Lie algebras and the infinite-dimensional
Lie algebras is that in the infinite-dimensional situation, it may happen that we have some
infinite linear combination (the length of the filtration may not be finite).

U(g̃) ⊗
U(b̃+)

Cλ,k,0 = U(n̂−) ⋅ vλ,k,

eα ∈ n+

basis of n+

∣ α ∈ Φ+

positive roots 

, fα ∈ n−

basis of n−

∣ α ∈ Φ+

positive roots 

, hi ∈ h ∣ hi = [ei, fi] .
⎧⎪⎨⎪⎩ 

⎫⎪⎬⎪⎭ ⎧⎪⎨⎪⎩ 

⎫⎪⎬⎪⎭ ⎧⎪⎨⎪⎩ 
basis of h,

 correspond to simple roots

⎫⎪⎬⎪⎭M(λ, k) = ⨁
μ

weight

, n

∈Z≥0

M(λ, k)μ,−n h → μ(h), d → −n.



cht,q
M(λ,k) = ∑

μ,n

tμqn dimM(λ, k)μ,−n,

= tλ ⋅ chU(n̂−),

= tλ ⋅ chS(n̂−),

= tλ ⋅ chC[fα[r+1],eα[r],hα[r]]r<0
,

= tλ ⋅ ∏
α∈Φ+

∏
n≥0

1
1 − t−αqn

∏
α∈Φ+

∏
n>0

1
1 − tαqn

(∏
n>0

1
1 − qn

)
rk g=dim h

.



Some examples of L(λ, k) = M(λ, k)/N(λ, k)

Recall that N(λ, k) is a maximal proper submodule.

For g finite-dimensional semisimple, the condition is ⟨α∨,λ⟩ = λ(hα) ∉ Z≥0 for all α ∈ Φ+, which
is a finite number of closed conditions. For us, this will be an infinite number of conditions, so
we need λ outside of a countable union of proper Zariski closed subsets in h∗, which is called
“Weil generic.”
Proof. M(λ, k) contains a proper submodule N  iff there exists a singular vector v ∈ M(λ, k)μ,−n

which is not a highest weight vector (i.e. μ ≠ λ or k ≠ 0) such that n̂+v = 0; this is a Zariski
closed conditions on λ, k. There are countably many pairs (μ, −n). So the condition that M(λ, k)

is reducible is the union of countably of many Zariski closed conditions on (λ, k).

So we need to check that for all μ, −n there exists (λ, k) where there is no such v in M(λ, k)μ,−n

. (This way the union is not everything.)

One way to prove it is to use the Casimir operator Ĉ = S0 + 2(c+ h∨)d where h∨ is just some
number. The eigenvalues on vλ,k and on v ∈ M(λ, k)μ,−n where n̂+v = 0 are different. But on
any Verma module Casimir commutes with every element, so Casimir acts by a constant, and
its eigenvalue should be always the eigenvalue on vλ,k. However if we have a singular vector
then it will act by something else; we can compute this. For example, for ŝl2 then Casimir acts
on highest weight vector by λ(λ+2)

2  while on any singular vector it acts by μ(μ+2)
2 − 2(k+ 2)n.

Since these must be equal, we have a very explicit closed condition on the singular vectors.

Another way (which is even more general, and you can apply it even when you do not have a
Casimir, such as the Virasoro algebra) is the following. Suppose |k| ≫ 0. We have a basis eα[r],
fα[r], and hi[r] for r ∈ Z. Then [eα[r], fα[s]] = hα[r+ s] + rδr+s=0. Change the generators by
dividing by √k, i.e. ẽα[r] = eα[r]

√k
. Then we get relations

So these “almost commute” and U(ĝ)/(c− h) can be regarded as a deformation of the
Heisenberg algebra ag, defined by the same generators ẽα[r], f̃α[r],hi[k], (indeed for any
g ∋ x ⇝ x̃[r] we have a mapping of each element to its corresponding new generator) and new
relations [x̃[r], ỹ[r]] = rδr+s=0⟨x, y⟩.

So this algebra is just the direct sum of dim g copies of the usual a: we have

Proposition 122.

For Weil generic (λ, k), then M(λ, k) is irreducible.

:

[ẽα[r], f̃α[s]] =
1

√k
h̃α[r+ s] + rδr+s=0.

d



□

and (√k)−1 is the deformation parameter.

Then M(λ, k) is a deformation of F ⊗dim g ⊗ C[fα[0]]α∈Φ+ . This is irreducible. This means that
there are no singular vectors with n > 0 in the limit k → ∞ (note that this is independent of λ).
The space of singular vectors is v⊗dim g

highest ⊗ C[fα]α∈Φ+ .

Now we have ⨁M(λ, k)μ,0 = U(n−)vλ,k ≃ M(λ) for g, irreducible for Weil generic λ. (In fact you
can replace condition |k| ≫ 0 with |λ+ k| ≫ 0 which gives a Heisenberg algebra without a
center, but we end up still getting an irreducible module.)

Oct 27
Shapovalov form (contravariant form) on Verma modules
We start with a graded Lie algebra L =⨁n∈Z Ln such that L0 is abelian. Denote L+ =⨁n>0 Ln

and L− =⨁n<0 Ln.

The main example for us will still be g̃, extended affine Kac-Moody algebra (extension of ĝ) and
Virasoro algebra V ir ∋ d = L0.

Now pick λ ∈ L∗
0. To this we can assign the Verma module

Then we have the weight space decomposition

where −ν runs over all possible weights (i.e., eigenvalues of adL0) of U(L−).

Why are we using L− here? The reason is that L is symmetric and L− ≅L+ are isomorphic.
This is not always true, but in this example it is, so in fact we have an antiautomorphism
swapping L− and L+,

U(ag) = a⊕dim g,

M(λ) = U(L) ⊗U(L++L0) Cλ =
as a graded vector space

U(L−).

M(λ) = ⨁
ν

M(λ)λ−ν

Θ : U(L) → U(L)op, Θ2 = id,
Θ(Ln) = L−n.

Example 123.

For Virasoro algebra V ir, we have Θ(C) = C and Θ(Ln) = L−n.



□

So in particular it’s ok to say − ν as the weights of L−. Let {ν} denote all possible weights of
L+. So it’s also natural to call the set of all weights in L+ roots and denote them as {α}. Then
any ν has the form ν =∑α nαα for nα ≥ 0 (note that ν is a possible weight of L+, not
necessarily one that appears).

Proof.
First note that ⟨vλ,M(λ)μ⟩ = 0 for μ ≠ λ, as Θ fixes L0 and swaps L− ↔ L+. (More generally,
he weight space decomposition is an orthogonal decomposition.) Since M(λ) = U(L−)vλ freely,
it suffices to define ⟨Y1vλ,Y2vλ⟩ for Y1,Y2 ∈ U(L−). From property (2), it has to be

This projection makes sense since the decomposition into weight spaces is an orthogonal
decomposition. It remains to see why this is symmetric. But in fact symmetric property follows
from uniqueness (else we could just swap the entries and produce a different inner product
satisfying the properties), or alternatively from the antiautomorphism, that Θ2 = id.

Why is this form so cool? Well, it’s actually responsible for the irreducibility of the Verma
module.

Example 124.

For g̃, we need to start with a finite-dimensional g. Here, we want Θ to swap ei and fi, and preserve
hi. Then we can extend this to g̃ by swapping ei[r] ↔ fi[−r], and swapping hi[r] ↔ hi[−r]. Lastly
we want c ↦ c and d ↦ d.
In fact the antiautomorphism still has the same form on g̃ as on g since we could have just defined
fαhighest [1] = e0 ↔ f0 = eαhighest [−1].
So we can define this antiautomorphism on any Kac-Moody algebra built from a Cartan matrix.

Proposition 125.

Let vλ ∈ M(λ) be a highest weight vector. (This is unique up to scalar, so we have to make some
choice.) There is a unique symmetric bilinear form ⟨, ⟩ on M(λ) such that:

1. ⟨vλ, vλ⟩ = 1.
2. For all v, v′ ∈ M(λ) and Y ∈ U(L), we have ⟨Y v, v′⟩ = ⟨v, Θ(Y )v′⟩.

⟨Y1vλ,Y2vλ⟩ = ⟨vλ, Θ(Y1)Y2vλ⟩

= ⟨vλ, prM(λ)λΘ(Y1)Y2vλ⟩.

Proposition 126.



□

Proof.
The radical is given by

This is a submodule and it is maximal.

Now let’s say something about these determinants. These guys are some function of λ, and in
fact they are polynomial functions.

Proof.
Choose some basis {xα} of L−. Then (the arrows denote some order)

1. M(λ) =⨁M(λ)λ−ν is an orthogonal direct sum decomposition.

2. Rad⟨, ⟩ = N(λ) ⊂ M(λ), the maximal proper submodule.

Rad⟨, ⟩ = {v ∈ M(λ) ∣ ∀Y ∈ U(L), prM(λ)λY v = 0}.

Corollary 127.

M(λ) is irreducible⟺ on each M(λ)λ−ν, the restriction of ⟨, ⟩ is nondegenerate ⟺ Dν ≠ 0

for all ν.

Definition 128.

The form ⟨, ⟩ is called the Shapovalov (contravariant) form. Let Γν be the matrix of ⟨, ⟩ in some
basis (for example, in the basis {Yivλ} for a monomial basis {Yi} of U(L−)). Let Dν = det Γν.:

Proposition 129.

Dν(λ) is a polynomial. Moreover, degDν ≤ dν, where dν are given by some generating functions
as follows. Let α be the (positive) roots (=weights of L+). Then

d
dw

∏
α with multiplicity

( 1
1 − wt−1

)
w=1

= ∑ dνt
−ν.∣⟨∏

⟶
xkα
α

Y1

vλ, ∏
⟶

x
ℓα
−α

Y2

vλ⟩ = ⟨vλ, ∏
⟵

xkα
α ∏
⟶

x
ℓα
−αvλ⟩,

 



□

which is a polynomial in λ whose degree is ≤ min(degPBW Y1, degPBW Y2). We want to swap all
of the factors in the second term from the left to the right, and the contributions will come
exactly from the commutators of something in the ∏← and something in the ∏→. So this is a
polynomial in λ, and

where PBW degree is just ∑ kα for ∏xkα
α  (and ∑ ℓα for the other). So to give an upper bound,

we just need to sum up over all of the monomials. Therefore

This is precisely what is given by the generating function, because the additional variable w
counts the degree with respect to the PBW filtration, and we need to sum up all of the degrees
with respect to w, so we need to differentiate and set w = 1. (So w is responsible for PBW.)

Note: what we mean by the information of the PBW filtration encoded by w can be illustrated
here. We can write the character of S(L−), which is the same as U(L−), by

since we need to run over all homogeneous generators, but with respect to the PBW degree,
each of the generators has degree 1, so we just have a factor of w above. And after that we
want to take a term wdtν to d ⋅ tν, hence the differentiation and setting w = 1.

degDν(λ) ≤ ∑
Y  monomials in U(L−), weight −ν

degPBW Y = dν,

degDν(λ) ≤ ∑ degPBW Y = dν.
monomials Y  in U(L−),

weight −ν

chS(L−)=U(L−) = ∏
α

1
1 − wt−α

,

Example 130.

In sl2, we have

So now if we consider the Verma module for sl2, represented by a sequence of dots going down,
then we have a degree 1 polynomial on the top dot, degree 2 polynomial on the second dot, degree
3 polynomial on the third dot, and so on. In fact we already know this polynomial! That’s because
we know what values each one vanishes: the polynomials are λ, λ(λ− 1), λ(λ− 1)(λ− 2), and so
on. So of course these polynomials can have huge degree, but any polynomial down below is
divisible by everything upstairs, because if we have a submodule starting on some dot, then the
radical has nonzero intersection with that weight space, but it also generates a Verma module
starting at that weight space, so there is a nontrivial radical in every dot below it as well. This is a
general idea which allows us to compute all of these determinants. For sure it is easy for a finite-

∂
∂w

1
1 − wt−2

w=1
=

t−2

(1 − t−2)2
= t−2 + 2t−4 + 3t−6 +⋯.∣



Oct 30
Shapovalov form on Verma module M(λ)

Setup: Let L =⨁n∈Z Ln be a Z-graded Lie algebra, L0 is abelian, all Ln are finite-dimensional,
and there is an automorphism of the Lie algebra inducing an anti-automorphism of the universal
enveloping algebra:

Consider a Verma module M(λ) for any highest weight λ ∈ L∗
0. Recall that

M(λ) = U(L) ⊗U(L≥0) Cλ. Then there exists a unique (up to constant) symmetric bilinear form

Now, given λ′ = λ− ν where −ν is any weight in the universal enveloping algebra of U(L−), we
may consider Dν(λ), the determinant of the Gram matrix of ⟨, ⟩ on M(λ)λ−ν. We want to
consider Dν(λ) as a polynomial function of λ, so that

Recall from Corollary 124 that M(λ) is irreducible ⟺  Dν(λ) ≠ 0 for all ν.

What is already known about these determinants? Well, we have an upper bound for the
degree, so we know it’s a polynomial, where degDν(λ) ≤ dν, where the dν are given by the
generating function

dimensional semisimple Lie algebra (and we will do this next time), and not too hard for ŝl2 (and
we will also do this next time), but it is a bit more tricky for Virasoro algebra.

Θ : U(L) U(L)op, Θ(Ln) = L−n, Θ|L0 = id.
∼
−→

⟨, ⟩ : M(λ) ×M(λ) → C,
⟨vλ, vλ⟩↦ 1 where vλ = 1 ⊗ eλ is the highest weight vector,

∀X ∈ U(L), ⟨Xv, v′⟩ = ⟨v, Θ(X)v′⟩.

Corollary 131.

The weight decomposition M(λ) =⨁λ′ M(λ)λ′  is in fact an orthogonal decomposition.

Dν(λ) ∈ C[L∗
0] = S(L0).

Remark 132.

Note that Dν(λ) is only defined up to a (nonzero) constant, because the Gram matrix itself is only
defined up to a nonzero constant. However, we can normalize this matrix by choosing a basis for
L−. ∣

https://en.wikipedia.org/wiki/Gram_matrix


Technically, we haven’t even confirmed that the Dν(λ) are nonzero. However, under mild
assumptions, we can confirm that these are indeed not all zero.

Let us assume that [, ] : Ln × L−n → L0 is nondegenerate.
We can regard this as a pairing Ln × L−n, with values in C[L∗

0] ⊃ L0 (we regard L0 as the
subset of linear functions inside C[L∗

0]; this will be useful to work with a ring rather than a vector
space).

Since this is pretty much always the case in the algebras we consider, we can assume this.

Proof.
What we’ll do is a version of the deformation argument for the (ir)reducibility of the Verma
module. Consider the family of Lie algebras Lε, depending on ε. As a vector space, Lε ≅L, but
the commutator operation gets renormalized. In fact, what happens is we take some basis in L
and renormalize it, by multiplying by powers of ε. We have:

For xn ∈ Ln and x−n ∈ L−n, we have [xε
n,x

ε
−n] = [xn,x−n]ε, and for n+m ≠ 0 we have

[xε
n,x

ε
m] = ε ⋅ [xn,xm]ε.

This is a family of Lie algebras so that Lε ≅L for ε ≠ 0, but for ε = 0 we get something like the
Heisenberg algebra, where all of the commutators are zero except when n+m = 0.

Now, we can still write the determinant of the Shapovalov form Dε
ν(λ) for Lε.

d
dw

∏
−α: weights in L−

(1 − wt−α)
w=1

= ∑ dνt
−ν.∣Example 133.

This is indeed the case for pretty much all examples we already know: ĝ, V ir, and a (Heisenberg).

Proposition 134.

Under the assumption, then Dν(λ) ≠ 0, and moreover degDν(λ) = dν.

L+ ∋ x ↦ xε = ε ⋅ x ∈ Lε
+,

L0 ∋ x ↦ xε = ε2 ⋅ x ∈ L
ε
0,

L− ∋ x ↦ xε = ε ⋅ x ∈ L
ε
−.

:

:
:

Lemma 135.



□

□

The proof is a straightforward computation.

However, for ε = 0, the Shapovalov form is really easy to compute in the monomial basis.

Proof.
Let Y1 =∏α∏

k1
α

i=1 x
1
α,i where xα,i ∈ L−α, and Y2 =∏α∏

k2
α

j=1 x
2
α,j the same thing; these are two

monomials. Then

In the first case, we just apply Θ, and get 0 because [x0
n,x

0
m] = 0 for n+m ≠ 0. This proves the

lemma.

The proposition follows from the lemma.

Now, so far this is mildly disappointing: we know that the Dν(λ) are huge polynomials, but we
know almost nothing else about them. So we’d really like to compute Dν(λ).

Dε
ν(λ) = Dν(ε−2λ) ⋅ ε2dν .

Corollary 136.

D0
ν(λ) is the degree-dν term of Dν(λ).

Lemma 137.

D
0
ν(λ) = ∏

ν=∑ kα

∈Z≥0

⋅ α

roots

∏
α

detS kαωα, ωα : Lα × L−α → L0.



⟨Y1vλ,Y2vλ⟩ = {
0 ∃α such that k1

α ≠ k2
α,

⨂S kαωα otherwise.

Corollary 138.

M(λ) is irreducible for Weil-generic λ.

Proposition 139.



We’ll prove this next time. The idea of the proof: consider the Verma module as a downwards
cone with vλ at the top. Then once we have a weight space λ− ν where the Shapovalov form
degenerates, then there is a submodule in M(λ) which intersects with this weight space
nontrivially. But then for any further weight space λ− ν ′ in the weight spaces of this submodule,
this submodule intersects with this weight space as well.

Nov 1
Determinant of Shapovalov form

First, let’s correct a statement from last time which is wrong.

Let L be our graded Lie algebra with Shapovalov form ⟨−,−⟩.

Note that the statement from last lecture is not true: the above statement rectifies it.
Proof.
The strategy of the proof is as follows. Consider the module M(λ). Then the divisibility by an
irreducible polynomial means that for any λ such that F(λ) = 0, then we have a submodule

Suppose F  is an irreducible factor of Dν(λ) (regarded as a multivariate polynomial). Suppose F
has multiplicity m, i.e. F m|Dν(λ) but F m+1 ∤ Dν(λ). Then for all ν ′ such that ν − ν ′ is a weight of
U(L−), we have

F m⋅pν ′−ν |Dν ′(λ), pν ′−ν = dimU(L−)ν−ν ′ .

Remark 140.

This divisibility is not necessarily strict. In other words, there may be a higher power of F  dividing
Dν ′(λ).

Definition 141.

Define Dν(λ) = det⟨, ⟩|M(λ)λ−ν
. Note that Dν(λ) ∈ C[L∗

0] = R, which is a factorial ring.: :

Proposition 142.

Suppose F  is a prime factor of Dν(λ). Then for any other ν ′, we have F pν−ν ′ |Dν ′(λ), where
pν−ν ′ = dimU(L−)ν−ν ′ .



which intersects nontrivially with the ν-weightspace, i.e. weight λ− ν. Take any vector from this
intersection and generate a free U(L−)-submodule. Then the dimension of its intersection with
the weight space λ− ν ′ is pν ′−ν because it is a free U(L−)-submodule. (We used that a
submodule of a free U(L−)-module is again free; this is a consequence of PBW theorem.) So at
least intuitively, Dν ′(λ) should be divisible by F pν ′−ν , because we have pν ′−ν many polynomials in
that weight space, each “giving” an F .

Want: consider M(λ) universally, over R, where ⟨, ⟩ is an R-value bilinear form. Pick a basis
{u1,… ,uN} over M(λ)λ−ν such that F |⟨u1, −⟩.
Once we have such a basis, we can produce a basis in M(λ)λ−ν ′  by doing the following: we
take u1 and apply all possible monomials Yi ∈ U(L−)ν−ν ′  to get {Yiu1}, then complete it to a
basis of M(λ)λ−ν ′ . Then the determinant of the Shapovalov form in such a basis will be divisible
by that power of F . (This is because the construction of ui means that for all Y ∈ U(L), then
F |prvλY ui. Therefore the same is true of the Yiu1.)

Problem: we are dealing with free R-modules, not vector spaces over a field.
Idea: reduce this to dealing with a PID, rather than just any factorial ring.
First, we want to use the Shapovalov form ⟨, ⟩ to get a map Sh : M(λ) → M(λ)∨, the restricted
dual. Note that M(λ)∨ has a U(L)-module structure given by (X. ξ)(v) = ξ(Θ(X). v) for
ξ ∈ M(λ)∨ and X ∈ U(L). This is called the contragradient dual module. In fact, in general
the contragredient dual module is not even in the category O, as it can be infinitely generated;
this is because modules can be not Artinian. In this case it is indeed in category O.
Then for any weight space we get

For generic λ, ν this is an isomorphism; in general we want to find the codimension.

Second, consider the universal Verma module over R:

This is still a free U(L−) ⊗R-module, and in particular we still get a weight decomposition
M =⨁M−ν. (Here, the ⊗U(L≥0)⊗R R means that L+ acts by 0, h ∈ L0 acts by h ∈ R = S(L0).)

Now consider Rloc = R(F) localization, along with MlocL = M ⊗R Rloc and M ∨
loc = M ∨ ⊗R Rloc.

Then Dloc
ν ∈ Rloc. We have F m|Dν in R ⟺ F mDloc

v  in Rloc, because R is factorial. This means
we can just look at divisibility in localizations.

Third, we can pick a compatible basis of Sh(Mloc,ν) and M ∨
loc,ν ∋ v1,… , vN  such that

F m1v1,… ,F mNvN  is a basis of Sh(Mloc,−ν) where F mivi = Sh(ui) for some ui ∈ Mloc,−ν . We
can do this because Rloc is a PID. And all of this is equivalent to the condition that F∑mi |Dloc

ν .

Sh(M(λ)λ−ν) ⊂ M(λ)∨λ−ν.

M = U(L) ⊗R⊗U(L≥0)⊗R R.

:



□

Finally, we can assume m1 > 0. Then Mloc,−ν ′  has a basis of the form
w1 = Y1u1,… ,wp = Ypu1,wp+1,… ,wq where Y1,… ,Yp is a basis of U(L−)ν−ν ′ .

Then Sh(w1),… , Sh(wp) ∈ F ⋅M ∨
loc,−ν ′ , which implies that F p|Dloc

−ν ′ .

How does this result help us to decompose the determinant of the Shapovalov form? Well,
Dν(λ) = FνF?ν where Fν are the new factors, and F?ν is the product of the factors that occur in
previous weight spaces.

Upper bound for degDν

We already have an upper bound for degDν, and it’s given by the power series

On the other hand, each of the irreducible factors gives rise to the same irreducible factors with
multiplicities being the coefficients of the power series ∏ 1

1−t−α =∑ pνt
−ν. So to have this

upper bound, we just need to divide:

Then we will see next time that for finite-dimensional semisimple Lie algebra g, this is already
sufficient for decomposing the determinant into linear factors, because all of the roots have
multiplicity 1, and all the factors coming from each nonzero coefficient of this power series is
different, so this is not just an upper bound, but an equality.

Nov 3
Today we will continue with irreducibility of Verma modules depending on its highest weight.

Irreducibility criterion for M(λ)

Let’s summarize what we already know. We know that M(λ) is irreducible ⟺  Dν(λ) ≠ 0 for
all ν. We also know that

These new factors only come up with ν ′ is a multiple of a root α. This is because last time, we
wrote a generating function for the degrees of new factors in the Shapovalov determinant,
which was

∂
∂w w=1

∏ 1
1 − wt−α

.∣∂
∂w

w=1

∏ 1
1−wt−α

∏ 1
1−t−α = (∏ 1

1−wt−α w=1
)

=
∂
∂w w=1

log∏ 1
1 − wt−α

= ∑
α

t−α

1 − t−α
.∣ ∣ ∣Dν(λ) = ∏ F

pν−ν ′

ν ′ .
ν ′=mα
α root∣



This means that λ−mα are the only possible weights where we can expect new factors in the
Shapovalov form.

Examples

Let’s see some examples: sl2, sl3. Let’s start with sl2, which is the easiest example ever.

Now let’s look at what happens for sl3.

d
dw w=1

log ∏
α positive roots

1
1 − wt−α

= ∑
α

t−α

1 − t−α
= ∑

m≥1, α

t−mα.∣Example 143.

For g = sl2, we have the following explicit description of M(λ). There is only one root α = 2.
Then each weight space λ,λ− 2,λ− 4,… is one dimensional. The Shapovalov determinant at
weight λ is 1. The determinant at weight λ− 2 is λ. The determinant at weight λ− 4 is λ(λ− 1).
The determinant at λ− 6 is λ(λ− 1)(λ− 2). And so on.

The reason that these factors arise is actually quite simple. These weight spaces are one-
dimensional, so it’s already straightforward, but in fact we don’t even need to compute these matrix
elements explicitly. The reason is that for λ = 0, the weight space −2, i.e. M(0)−2 generates a
submodule isomorphic to M(−2) ⊂ M(0). This is because M(0) has a one-dimensional quotient,
the simple module L(0). Therefore, going down one level from weight λ to λ− 2 must introduce a
factor in the Shapovalov determinant which vanishes at 0, namely λ: therefore the Shapovalov
determinant of weight λ− 2 must have a factor of λ. On the other hand, we know that the degree of
the Shapovalov determinant is 1, so it must be exactly λ (up to nonzero scalar).

Similarly, if λ = 1, then we have a submodule M(−3) ⊂ M(1) such that the quotient is
M(1)/M(−3) = L(1), a two-dimensional representation with highest weight 1. This means that
moving from weight λ− 2 to λ− 4, we introduce a factor in the Shapovalov determinant which is
killed by 1, namely λ− 1. On the other hand, the degree of the Shapovalov determinant is at most 2
. Therefore the Shapovalov determinant is exactly λ(λ− 1). Continuing in this way, we can
compute the Shapovalov determinants for every weight space λ− 2m.

Example 144.



Let g = sl3. Recall that the root system looks like:

Therefore the negative roots act like:

The dimensions of the weight spaces are indicated by the number of bullets, and they’re precisely
the number of ways to write that weight as nonnegative integer combinations of the positive roots
α1,α2,α3 = α1 + α2. (For example, the weight space λ− α1 − α2 has dimension 2, by
coefficients (1, 1, 0) and (0, 0, 1), which are linearly independent by PBW theorem.) See the

https://en.wikipedia.org/wiki/Kostant_partition_function


Kostant partition function; the dimension of a weight space μ can be computed by writing
mu = λ− n1α1 − n2α2 for n1,n2 ∈ Z≥0, then dimM(λ)μ = 1 +min(n1,n2).

The weight spaces which introduce a new factor in the Shapovalov determinant are precisely the
starred weight spaces: they are λ−m ⋅ αi for one of the positive roots αi ∈ {α1,α2,α3}.

Why do these come up, and what factors do they introduce? This question essentially boils down to
where singular vectors may exist - wherever they may come up, they impose a condition on λ
which, if satisfied, creates a singular vector, and the corresponding factor in the Shapovalov
determinant reflects exactly this condition.

As a case study, let’s look at v = f 2
α1
vλ, the generator of the weight space λ− 2α1. We already

know that eα2v = 0. In order for v to be singular, we also need eα1v = 0. But this implies that

which is a question purely about the sl2-triple generated by root α1 acting on the highest vector vλ.
So this vector is 0 iff the weight λ restricted to the copy of sl2 generated by this root α1 is 1:

So the condition that there is a singular vector at weight λ− 2α1 is precisely that ⟨λ,α∨
1 ⟩ = 1.

More generally, f k
αi
vλ is a singular vector ⟺  ⟨λ,α∨

i ⟩− k+ 1 = 0. This can be rewritten as
⟨λ+ ρ,α∨

i ⟩ = k, where ρ ∈ h∗ such that ⟨ρ,α∨
i ⟩ = 1 for all i, and k ∈ Z≥0; this will be useful

when we need to consider the dot action of the Weyl group W . This is summarized in this diagram,

0 = eα1v = eα1f
2
α1
vλ,

0 = eα1f
2
α1
vλ ⟺ 1 = λ

sl
α1
2

= ⟨λ,hα1⟩ =
2⟨λ,α1⟩

⟨α1,α1⟩
= ⟨λ,α∨

1 ⟩.∣

https://en.wikipedia.org/wiki/Kostant_partition_function


with the condition written under the star:

Now we see that these are polynomial conditions on λ, and furthermore they are all distinct, hence
the factors introduced in the Shapovalov determinant are all distinct, and thus covers every factor
introduced by simple roots α1,α2. There is one more root: α3 = α1 + α2, and this is a bit trickier.
This is because when you apply fα3

 to vλ repeatedly, you actually never get a singular vector. But
for some reason, under some conditions on λ, you do get a singular vector in these weight spaces.
The idea is to examine submodules in M(λ) for integral λ.

Let’s first consider the dominant case. Let λ be dominant: ⟨λ+ ρ,α∨
i ⟩ = mi > 0, where mi ∈ Z>0

. We just showed that we have submodules generated by the vectors at weight spaces λ−m1α1 and
λ−m2α2. It turns out that these two Verma modules intersect nontrivially, for dimension reasons:
each is a free U(n−) module, just shifted by the corresponding weight. If we check the dimensions
of the weight subspaces, the Kostant partition function shows that
dimU(n−)−n1α1−n2α2

= 1 +min(n1,n2), and eventually the sum of the weight spaces of these two
submodules must be larger than the corresponding weight space of the original M(λ). (You can
think of the dimensions of the weight spaces as growing linearly with some fixed coefficient; then
summing the dimensions of the two submodules doubles the coefficient at the cost of some fixed
finite offset, and for large enough terms, 2x+ c overtakes x+ c′ even when c′ ≫ c.) On the other
hand, there are not that many possibilities for where these can intersect (at least at the highest
weight): they must generate a submodule in the original Verma module, so where they intersect
should be special. This naturally leads us to our next question.

What is the highest weight of a submodule in M(λ)?
The answer is known: it’s μ such that (where Z denotes center) Z(U(sl3)|M(μ) = Z(U(sl3))|M(λ).
That’s because the center acts by a scalar in M(λ), so must act by the same scalar on any
submodule, so if M(μ) is a submodule then the scalar must still act as the same scalar. (Note that in
the sl2 case, this already answers the question, since the center is generated by the Casimir, which
acts by λ(λ+2)

2  on M(λ). But in this case, it is slightly more complicated!)

:



So the condition is: fix α and k ∈ Z>0. There is a singular vector in M(λ)λ−kα ⟺
⟨λ+ ρ,α∨⟩− k = 0.

We will generalize this theorem next time, both to finite-dimensional cases, and discussing for
the infinite-dimensional case (as well as the special case of ŝl2).

Nov 6
Vasily Krylov will be teaching this class instead of Leonid Rybnikov.

Notation:

Now, there is a very general description of the center of the universal enveloping algebra: the
Harish-Chandra theorem states that Z(U(g)) = U(g)g S(g)g, so grZ(U(g)) = S(g)g. In g = sl3

case, it’s generated by two elements (in degrees 2 and 3): trX 2 and trX 3 in
C[X ∈ Mat3(C) ∣ trX = 0]sl3 . Now Harish-Chandra says that Z(U(g))M = C[h∗](W ,⋅), where the
dot action is w ⋅ λ = w(λ+ ρ) − ρ.

In particular, for all c ∈ Z(U(g)), then c acts by a scalar, and this scalar c|M(λ) is a (W , ⋅)-invariant
polynomial of λ. In our case of sl3, they are generated by x2

1 + x2
2 + x2

3 and x3
1 + x3

2 + x3
3, but

shifted by ρ. So if λ = (λ1,λ2,λ3) then λ+ ρ = (λ1 + ρ1,λ2 + ρ2,λ3 + ρ3), and the (W , ⋅) action
sends λ ↦ (w(λ1 + ρ1) − ρ1,w(λ2 + ρ2) − ρ2,w(λ3 + ρ3) − ρ3), and the polynomials are
precisely the polynomials in terms of these new factors.

So returning to our picture, the only possible highest weights are W ⋅ λ. In our case W = S3 so
there are six possible μ, and they correspond to permutations, i.e. permutations of
(λ1 + ρ1,λ2 + ρ2,λ3 + ρ3), then subtracting (ρ1, ρ2, ρ3) (just work out the dot action of S3).

It is even possible to show that an intersection of two submodules is a sum of the Verma modules of
these highest weights.

What we find is that λ−m1α1 and λ−m2α2 generate submodules, and these intersect to form
further submodules: the highest weights of these will differ from λ−m1α1 and λ−m2α2 by some
positive integer multiples of the highest weight α3 = α1 + α2, arranged by the W = S3 dot action.
(The difference could be any multiple of the highest root.) There are infinitely many integral λ such
that ⟨λ+ ρ, (α1 + α2)∨⟩ = k ∈ Z>0.

∼
←−

Theorem 145 (Verma).

Let g = sl3. Then M(λ) is irreducible ⟺  ⟨λ+ ρ,α∨⟩ ∉ Z>0 for all positive roots α.



Our goal for today is to prove the following theorem:

What we already know:

Naive idea: prove Theorem 143 (Verma) step by step, by writing sα = sn ⋯ s1 as a product of
simple reflections.

Unfortunately, this doesn’t work. Let’s take a look at a problem which arises. Let g = sl3. Then
Δ = {α1 = ε1 − ε2,α2 = ε2 − ε3}, and ρ = α1 + α2. Pick α = α1 + α2 = ε1 − ε3. Now let us
write:

g is a simple finite-dimensional Lie algebra.
h ⊂ g is a Cartan subalgebra.
Φ+ denotes the positive roots.
Λ denotes the weight lattice (this consists of λ ∈ h∗ such that ⟨λ,α∨⟩ ∈ Z for all α ∈ Φ).
Δ ⊂ Φ+ denotes the simple roots.
≤ is the partial order on Λ. Weights μ ≤ λ ⟺ λ− μ ∈ Z≥0Δ.
W  denotes the Weyl group.

Theorem 146 (Verma).

If λ ∈ h∗ and α ∈ Φ+ are such that sα ⋅ λ = μ ≤ λ, then there is an embedding M(μ) ⊂ M(λ).:

Proposition 147.

In the assumptions of Theorem 143 (Verma), if α is simple (i.e. α ∈ Δ), then there exists
M(μ) ⊂ M(λ).

Corollary 148.

If λ+ ρ ∈ Λ+ is dominant, then for all w ∈ W , then M(w ⋅ λ) ⊂ M(λ).
In fact, writing w = snsn−1 ⋯ s1 as a reduced expression, then

w ⋅ λ ≤ (sn−1 ⋯ s1) ⋅ λ ≤⋯ ≤ s1 ⋅ λ ≤ λ

⇓
M(w ⋅ λ) ⊂ M((sn−1 ⋯ s1) ⋅ λ) ⊂⋯ ⊂ M(s1 ⋅ λ) ⊂ M(λ).

λ = sα1 ⋅ 0 = sα1(ρ) − ρ = −⟨ρ,α∨
1 ⟩α1 = −α1,

μ = sα ⋅ λ = sα(α2) − ρ = −α1 − ⟨α2,α∨⟩α = −2α1 − α2.
:
:



□

We easily see that λ− μ = α1 + α2 = α ∈ Δ ⊂ Z≥0Δ, so μ ≤ λ. By Theorem 143 (Verma), we
should have an embedding M(μ) ⊂ M(λ). However, if we apply our naive idea to try to prove
this, we should first write sα as a product of simple reflections:

But we do not get a chain as in Corollary 145: we have

So we see that the dominant hypothesis is actually crucial, and also that we unfortunately won’t
be able to get this naive idea to work. Let’s use a different approach. (This approach will be
more tricky.)

Proof.
First, write the operator adx : U(y) → U(y) as adx = ℓx − rx, the difference of two commuting
operators given by left and right multiplication by x. It immediately follows that rx commutes
with adx. Then since y is nilpotent, there exists q > 0 such that (adx)qu = 0 (in fact, there even
exists q such that (adx)q = 0 as operators, but this is enough for our purposes). Now let’s
choose t ≥ q + n. Then

We’ll use this lemma later. Now let us formulate another fact; this one will be left as an
exercise (use induction on t).

sα = sα1sα2sα1 .

sα ⋅ λ
−2α1−α2

< sα2sα1 ⋅ λ

−α2

< sα1 ⋅ λ

0

> λ

−α1

.   

Lemma 149.

Let y be a nilpotent Lie algebra, x ∈ y, u ∈ U(y). Given n ∈ Z≥0, then there exists t ∈ Z≥0 such
that xtu ∈ U(y)xn.

xtu = ℓtxu,
= (rx + adx)tu,

=
t

∑
i=0

(t
i
)rt−i

x (adx)iu,

=
q

∑
i=0

(t
i
)(adx)iuxt−i ∈ U(y)xt−q ⊂ U(y)xn.

Lemma 150.

Let A be an associative algebra. If x, y,h = [x, y] ∈ A are three elements which satisfy the relations
of sl2, then [x, yt] = tyt−1(h− t+ 1).



Now we are ready to prove the first key proposition.

This proposition should be thought of as: if we know a bit about M(μ) and M(λ), then we can
extract information about M(sα ⋅ μ) and M(sα ⋅ λ).

Proof.

Now since M(μ) ⊂ M(λ), we know that vμ = uvλ for some u ∈ U(n−). Therefore by Lemma
146, there exists t such that ttαu ∈ U(n−)ynα. This means that for some t, we have

So for t ≫ 0, we have ytαvμ ∈ M(sα ⋅ λ). It only remains to check that we can take t = r. The
idea is simple: since we can take arbitrarily large t, we may assume t ≥ r, and then take
smaller and smaller t. Namely, if t > r, then Lemma 147 implies that

Proposition 151.

Let λ,μ ∈ h∗, and α ∈ Δ is simple. Write n = ⟨λ+ ρ,α∨⟩ ∈ Z., so that sα ⋅ λ = λ− nα. Assume
that M(sα ⋅ μ) ⊂ M(μ) ⊂ M(λ). Then:

:

1. If n ≤ 0, then M(λ) ⊂ M(sα ⋅ λ).
2. If n > 0, then M(sα ⋅ μ) ⊂ M(sα ⋅ λ) ⊂ M(λ).

Note that in either case, M(sα ⋅ μ) ⊂ M(sα ⋅ λ).

1. This part is easy. Proposition 144 implies that M(λ) ⊂ M(sα ⋅ λ), since n ≤ 0 so λ ≤ sα ⋅ λ

and they are related by a simple reflection.
2. Again, Proposition 144 implies that M(sα ⋅ λ) ⊂ M(λ). So it remains to show that

M(sα ⋅ μ) ⊂ M(sα ⋅ λ). What we already know is that

What we want to prove is that M(sα ⋅ μ) ⊂ M(sα ⋅ λ). The idea to prove this is to track the
highest weight vectors generating these Verma modules. We have highest weight vectors
vλ ∈ M(λ) and ynαvλ ∈ M(sα ⋅ λ); similarly, we have vμ ∈ M(μ) and yrαvμ ∈ M(sα ⋅ μ):

Our goal is to show that yrαvμ ∈ M(sα ⋅ λ) (understood by the embeddings above), which
will then imply that M(sα ⋅ μ) ⊂ M(sα ⋅ λ).

M(sα ⋅ λ) ⊂ M(λ)
∪

M(sα ⋅ μ) ⊂ M(μ).

ynαvλ ∈ M(sα ⋅ λ) ⊂ M(λ) ∋ vλ

∪
yrαvμ ∈ M(sα ⋅ μ) ⊂ M(μ) ∋ vμ.

ytαvμ = ytαuvλ ∈ U(n−)ynαvλ ⊂ M(sα ⋅ λ).



□

Now since t > r, then (r− t)t ≠ 0, so yt−1
α vμ ∈ M(sα ⋅ λ). Therefore we can continue in this way

until t = r, at which point we’ve proved our goal, that yrαvμ ∈ M(sα ⋅ λ), which then implies that
M(sα ⋅ μ) ⊂ M(sα ⋅ λ).

This was actually the key fact for today’s lecture!

Finally, let’s prove Theorem 143 (Verma).

Proof.
First, we assume that λ ∈ Λ is integral.
We know that there exists w ∈ W  such that μ′ = w−1 ⋅ μ ∈ Λ+ − ρ. Let’s write w = sn ⋯ s1, and
put μk = (sk ⋯ s1) ⋅ μ′. Also write λ′ = w−1 ⋅ λ and λk = (sk ⋯ s1) ⋅ λ′. For convenience,
denote wk = sk ⋯ s1. Note that we know plenty about μk’s, but we don’t know too much about
λk’s.

We know that μ = sα ⋅ λ, which implies (easy exercise) that μk = sβk
⋅ λk, where βk = w−1

k (sα).
In particular, we know that μk = λk − ⟨λk + ρ,β∨

k ⟩βk, which means that either λk > μk or μk > λk

. (Note that we don’t know much about the relation between λk and μk, but we do know that
they are directly comparable - because βk is just a single root!)

We have

We also have

However, unlike with the μi’s, we don’t know any relations between them. What we do know is
the following comparisons (denoted by vertical > and <): that μ0 = μ′ > λ′ = λ0, but
μn = μ < λ = λn, and that the signs are consistent until some index where they flip.

[xα, ytα]vμ = tyt−1
α ( hα

r−1

− t+ 1)vμ,

⟹ (xαy
t
α − ytαxα

acts by 0

)vμ = (r− t)tyt−1
α vμ,

⟹ M(sα ⋅ λ) ∋ xα( ytαvμ

∈M(sα⋅λ)

) = (r− t)tyt−1
α vμ.







:

: : :

:

μ = μn ≤ μn−1 ≤ ⋯ ≤ μk+1 ≤ μk ≤ ⋯ ≤ μ1 ≤ μ0 = μ′.

λ = λn λn−1 … λk+1 λk … λ0 = λ′.



□

Say k is exactly this index (where the sign flips), as in the above image, i.e. k is minimal such
that μk > λk. Then the difference (note that ⋅ means ρ-shifted, no ⋅ means no ρ-shift) shows:

But the only positive root that sk+1 makes into a negative root is αk+1, hence

So μk+1 = sαk+1 ⋅ λk+1 < λk+1. Since αk+1 is not just any root, but it is actually a simple root, we
can apply Proposition 144 to find that

Now we apply Proposition 148 to see that

and so on, eventually concluding

I’ll only give a sketch of the proof for the general case, when λ ∈ h∗, however the full proof can
be found in §4.7 of Humphreys’ book. Fix n ∈ Z>0 and α ∈ Φ+, and
H = Hα,n = {τ ∈ h∗ ∣ ⟨τ + ρ,α∨⟩ = n}. Let X = {τ ∈ H ∣ ∃M(sα ⋅ λ) ⊂ M(λ)} ⊂ H. The goal is
to show that in fact X = H. We know that Λ ∩H ⊂ X, and in fact we claim that Λ ∩H is dense
in X in the Zariski topology (left as an exercise; if p(x1,… ,xn) is a polynomial such that
p|Zn = 0, then p = 0; use induction on n). Then it remains to check that X is closed in H (in the
Zariski topology), which will prove that X = H, proving the theorem.

Nov 8
Shapovalov determinant for ĝ, with a focus on ŝl2

μk+1 − λk+1

negative multiple of βk+1

= sk+1 ⋅ μk − sk+1 ⋅ λk = sk+1 (μk − λk)

positive multiple of βk

. 

βk = βk+1 = αk+1.

M(μk+1) ⊂ M(λk+1) ⟹ M(μk+2) ⊂ M(μk+1) ⊂ M(λk+1).

M(μk+2) ⊂ M(λk+2),

M(μ) = M(μn) ⊂ M(λn) = M(λ).

:

https://bookstore.ams.org/view?ProductCode=GSM/94


Recall that in the finite-dimensional case, we have the Verma theorem:

The condition that sα ⋅ λ = μ is equivalent to

So we have obtained a new factor of the Shapovalov determinant for any multiple of any root.
According to the general theorem, this is sufficient: this allows us to split the Shapovalov
determinants into linear factors.

This follows from the upper bound of the degrees of the determinants and the divisibility
theorem (that any Dν is divisible by a sufficient power of the previous ones).

Note that in Theorem 149 (Verma), this is if and only if.

Extending this to ĝ

Recall that we have the decomposition

Theorem 152 (Verma).

If μ < λ in the partial order on the roots, and sα ⋅ λ = μ (for any α > 0, not just simple roots), then
we have an embedding M(λ) ⊃ M(μ).

λ− μ = ⟨λ+ ρ,α∨⟩ ⋅ α =
2⟨λ+ ρ,α⟩
⟨α,α⟩

⋅ α.

Corollary 153.

Let m = 2⟨λ+ρ,α⟩
⟨α,α⟩ . Then Dmα(λ) = 0, which is equivalent to Dmα(λ) being divisible by

2⟨λ+ ρ,α⟩−m⟨α,α⟩, which is a linear function of λ plus some constant.

Corollary 154.

Any Dν(λ) splits into linear factors as in Corollary 150, corresponding to mα satisfying mα ≤ ν.

Corollary 155.

If 2⟨λ+ ρ,α⟩−m⟨α,α⟩ ≠ 0 for all α > 0 and m > 0, then M(λ) is irreducible.

ĝ = n̂− ⊕ ĥ ⊕ n̂+,



where ĥ is spanned by the usual Cartan h and the central element c. We have the very similar
decomposition

where the only difference is that the Cartan is upgraded to h̃, which is spanned by h, c, d. Why is
this better? It’s because it gives an additional grading and it makes the weight spaces in n̂±

finite-dimensional (otherwise, with respect to the usual Cartan h, the weight spaces are infinite-
dimensional (and the central element c acts trivially via adjoint)). So this addition of d is actually
crucial.

Important question: What are the roots?

Roots

This is an infinite root system; there are infinitely many roots. The roots are determined by the
following property:

First, note that this is orthogonal to the central element c; if we substitute c, we get 0. So all of
the roots lie in a hyperplane. So let us denote {c}⊥ = ĥ∨.

We have a nondegenerate form on this Cartan h̃ which pairs c with d. So this means that the
restriction to ĥ∨ is degenerate (c is an isotropic vector). So in particular this means the scalar
product of any root with itself ⟨α,α⟩ ≥ 0 is always at least 0, but strangely, it can be 0. Therefore
we usually think of roots, bilinear pairing, etc. only on g̃ (rather than ĝ).

g̃ = n̂− ⊕ h̃ ⊕ n̂+,

Φ = {α ∈ h̃ ∣ ∃ 0 ≠ eα ∈ n̂± s.t. ∀x ∈ h̃, [x, eα] = α(x) ⋅ eα}.

:

Example 156.

Let g = sl2. Then ŝl2 splits into a direct sum of 1-dimensional root subspaces.
What are the roots? In the (adh[0], ad d)-eigenvalue coordinates (i.e. bigrading from h[0] and d),
they are {−2, 0, 2} × Z, except for (0, 0).
Now what is the scalar product? Well, it doesn’t depend on the second coordinate (on the d-
eigenvalue). It turns out to be ⟨(x1,x2), (y1, y2)⟩ = 1

2 x1y1. So we find that all of the roots with d-
grading ± 2 have ⟨α,α⟩ = 2, we call them real roots (green in the below diagram). All of the roots



Now for arbitrary g, the roots are given by:

For a real root α, we can define the corresponding reflection

We still have an sl2-triple e = eα, f = e−α, and hα = [eα, e−α] (the hα corresponds to α∨, thus
giving an identification h̃ ↔ h̃∗, just as in the finite-dimensional case).
The moral of the story is that we still have roots, and the real roots behave just as in the
finite-dimensional situation; the other imaginary roots behave differently.

For imaginary roots α, we have a Heisenberg subalgebra (though it is not uniquely determined,
since they may not be multiplicity 1, so you need to make a choice of a basis in h).

What is ρ?

with d-grading 0 have ⟨α,α⟩ = 0, we call them imaginary roots (red in the below diagram).

Φ× Z
real

= {(α,n) ∣ α ∈ Φ,n ∈ Z}, {0} × Z≠0

imaginary

= {(0,n) ∣ 0 ≠ n ∈ Z}. 

sα : β ↦ β−
2⟨α,β⟩
⟨α,α⟩

⋅ α = β− ⟨α∨,β⟩ ⋅ α, α∨ =
2α
⟨α,α⟩

.

:



In all of those formulas, we had ρ. What is ρ? In the finite-dimensional case, we define
ρ = 1

2 ∑α>0 α. Obviously this doesn’t work here since there are infinitely many positive roots.
But another definition is the sum of the fundamental weights. This definition will work in the
infinite-dimensional case, but we need to define what a fundamental weight is.

The usual definition of fundamental weight is ⟨ωi,α∨
i ⟩ = δij, i.e., dual pairing with the simple

roots. We already discussed what the simple roots are in the affine situation.

Simple roots: these should be a “basis” so that anything in n̂+ is a nonnegative integer linear
combination of simple roots.

Once we have simple roots, we have simple coroots as well.

What about the fundamental weight ω̂i? Well, it should be a triple (−,−,−) ∈ h∗ × Cc∗ × Z, but
the Z component (regarding d) doesn’t matte. The h∗ component is ωi, and the Cc∗ component
is ⟨ωi, θ∨⟩; this gives us an ω̂i which pairs with α∨

i  to 0. On the other hand, ω̂0 = (0, 1). This
means that we can define ρ̂:

Note that ⟨ρ, θ∨⟩ is just a number depending on g.

:

Definition 157 (simple roots).

Let α1,… ,αr be the simple roots for g. For ĝ, our simple roots will be

where θ is the highest root.

(α1, 0)

α̂1

, (α2, 0)

α̂2

, … , (αr, 0)

α̂r

, (−θ, 1)

α̂0

   

Definition 158.

The simple coroots are

{(α∨
i , 0)},

2(−θ, 1)
⟨θ, θ⟩

= (−θ∨,
2
⟨θ, θ⟩

).

Definition 159 (ρ̂).

ρ̂ =
r

∑
i=0

ω̂i = (ρ, 1 + ⟨ρ, θ∨⟩).



Now we’re trying to generalize Corollary 150 to ĝ. For α a real root, there is no problem; all of
the linear factors are different, and they all contribute to the determinant of the Shapovalov
form. But when α is imaginary, we get problems: then m⟨α,α⟩ = 0, so it somehow doesn’t
depend on m. Then all of the factors coincide, so we can’t just say that the Shapovalov form is
divisible by the product of these factors. So we need to do something more.

For next time, we’ll compute Dν(λ) for ŝl2; we just need to investigate what happens at the
imaginary roots.

Nov 13
Singular vectors in a Verma module (with focus on ŝl2)
Let’s recall what we already know.
We have an affine root system, on the extended affine Lie algebra

We do this in order to make the invariant scalar product nondegenerate on the Cartan
subalgebra. Then we consider h̃∗; we have the roots Φ̂ satisfying

Here, Φ denotes the roots of g. Note that the root system lies in the codimension 1 subspace
orthogonal to the central element c, as ad c acts by 0. Inside the roots Φ̂ we have the subset of
simple roots Π̂:

We also have the weight lattice

Example 160.

Let g = sln. Then 1 + ⟨ρ, θ∨⟩ = 1 + (n− 1) = n.

Remark 161.

The number ⟨ρ, θ∨⟩ is called the (dual) Coxeter number, and there are several definitions of it.

g̃ = n̂− ⊕ h ⊕ Cc⊕ Cd

h̃

⊕ n̂+.

h̃∗ ⊃ (Cc)⊥ ⊃ Φ̂ = (α+ nd∨)
eα⋅zn

, (0 +
n≠0

n d∨)

h⋅zn

∣ α ∈ Φ, n ∈ Z .
⎧⎪⎨⎪⎩ 



⎫⎪⎬⎪⎭Π̂ = {αi αi ∈ Π, simple roots for g

−θ+ d∨ = α0 θhighest root for g.:

{ }



Note that if λ̂ ∈ Λ̂, then so is λ̂+ rd∨, so in fact we may assume that Λ̂ ⊂ (Cd)⊥.

Next, we need to understand the affine Weyl group.

In the finite-dimensional situation we consider the group generated by reflections sα for all
simple roots α. We basically do the same thing:

The affine Weyl group acts on ĥ∗, preserving Φ̂.

Λ̂ = {λ̂ ∈ ĥ∗ ∣ ⟨λ̂,α∨⟩ ∈ Z ∀ simple roots α}.

Example 162.

Let’s consider ŝl2. The root system is as follows.

Definition 163 (affine Weyl group).

The affine Weyl group Ŵ  is the group generated by reflections sα for α ∈ Π̂, where

sα : β ↦ β−
2⟨α,β⟩
⟨α,α⟩

α.

Example 164.

Let’s consider ŝl2. Recall that sl2 has a single root α = 2; note that ⟨α,α⟩ = 2 so in fact α = α∨ for
any real root.. Let λ̂ ∈ h̃∗, so that λ̂ = λα+ εc∨ + ηd∨. Then ŝl2 has two simple roots, α1 = α and
α0 = −α+ d∨. Let’s see what sα1  does. We can compute that

On the other hand, we have α0 = −α+ d∨ = −2 + d∨, so

sα1
(λ̂) = −λα+ εc∨ + ηd∨.

sα0(λ̂) = λα1 + εc∨ + ηd∨ − (−2λ+ ε) ⋅ (−α1 + d∨) = (ε− λ)α1 + εc∨ + (η− ε+ 2λ)d∨.



Observation: Ŵ  is generated by sα for α real. (This is clear for this case, but in fact it’s true in
general).

Shifted action of Ŵ

We have the analogue of ρ:

On Nov 6 we proved Theorem 143 (Verma) for finite-dimensional Lie algebras. Here is the
analogue for affine Lie algebras.

Proof.
We want to show that the plan of the proof of Theorem 143 (Verma) works here. Let’s recall the

So in this case, Ŵ  is freely generated by sα1  and sα0 , which are reflections of the affine line A1

with two different centers.

Remark 165.

In fact, the real roots are precisely the roots which can be obtained from a simple root using the
action of the (affine) Weyl group.

ρ̂ = ∑ ω̂i.:

Example 166.

For ŝl2, we have ρ̂ = α1
2 + 2c∨.

Definition 167.

The dot action of Ŵ  on h̃∗ is

w ⋅ λ = w(λ̂+ ρ̂) − ρ̂.:

Theorem 168 (Verma).

Suppose α is a real root, and λ̂ is such that sα ⋅ λ̂ < λ̂ ⟺ 2⟨λ̂+ρ̂,α⟩
⟨α,α⟩ ∈ Z>0.

Then there is an embedding M(sα ⋅ λ̂) ⊂ M(λ̂).



□

plan.

The argument here is actually the same. To any real root α corresponds an sl2-triple {eα,hα, fα}

. Now say m = 2⟨λ̂+ρ̂,α⟩
⟨α,α⟩ . Then fm

α v
λ̂
 is a singular vector, since eα acts by zero, and all of the

other raising operators act by zero as well.
2) It was sufficient to prove for integral λ, because then we apply some interpolation argument.

In our case, it’s sufficient to prove for integral λ̂ and the level k satisfies k > −2, because then
there exists w ∈ Ŵ  with w ⋅ λ̂+ ρ̂ is dominant (i.e., scalar product with any simple coroot is
nonnegative). This means that if we take such a weight, then for any simple reflection sα acting
on the highest weight vector of this weight, we have a submodule.
3) Once we have this, we only need the following lemma.

The proof is actually the same as in the finite-dimensional case (see proof of Proposition 148).
It uses only the nilpotence of ad fα, which will imply local nilpotence of ad fα on the universal
enveloping algebra U(n̂−).

Nov 15
ŝl2 Verma modules on the level k = −2

Observation: the factors in the Shapovalov determinant Dν(Λ) are always of the following
form: 2⟨Λ + ρ,α⟩− n ⋅ ⟨α,α⟩ for some n ∈ Z>0 and α some positive root.

For real roots, we have seen how these factors arise: once this condition is satisfied, we can
construct a singular vector in the Verma module. This formula is really nice, so we might
suspect that it holds for any root, whether real or imaginary. Let us see what this means for
imaginary roots. For imaginary α, this factor is 2(c+ 2) − 0 (where c is the central element). So
we expect something special happening at the level k = −2. So let’s see where this comes
from. We’ll need a recollection of Sugawara elements (in the completed universal enveloping
algebra).

Sugawara elements

1. M(sα ⋅ λ) ⊂ M(λ) if α is simple.

Lemma 169.

Assume that M(sα ⋅ μ̂) ⊂ M(μ̂) ⊂ M(λ̂). Then M(sα ⋅ μ̂) ⊂ M(sα ⋅ λ̂).



□

Recall that the Sugawara elements come from trying to construct central elements in the loop
algebra; we do this by using the formula for the Casimir element and substituting the relevant
elements corresponding to the generators of sl2.

Define e(u) =∑ e[r]e−r−1, and we define f(u), h(u) similarly.
Then define the Sugawara element power series to be

What is good about these elements Sn is that the commutator [Sn, −] acts as an element of the
Witt algebra. We have an action [Sn, −] ↷ U(ĝ)k = U(ĝ)/(c− k). Of course, we can compute it
explicitly.

Proof.
This can be checked directly via computation, but we can optimize it as follows.
First, the quadratic term in [Sn,x[r]] vanishes, so [Sn, −] comes from a derivation of ĝ.
Second, [Sn, −] commutes with g ⊂ ĝ, because it was constructed from the Casimir element,
which is g-invariant. (These two steps are general.)
Third, we know that Der ĝ/ad ĝ ≅W , the Witt algebra. This means that [Sn, −] acts as some
element of W .
Finally, Sn is homogeneous degree n with respect to z∂z, so [Sn, −] is a constant times zn+1∂z.
Therefore it suffices to compute the coefficient, which we can find by computing
[Sn,h[1]] = 2(c+ 2)h[n+ 1].

S(u) = : e(u)f(u) : + : f(u)e(u) : + :
1
2
h(u)h(u) :

= ∑
n

Snu
−n−2,

Sn = ∑
r+s=n, s>0

e[r]f[s] + f[r]e[s] +
1
2
h[r]h[s] + ∑

r+s=n, s≤0

f[s]e[r] + e[s]f[r] +
1
2
h[s]h[r].

Proposition 170.

[Sn, −] = 2(c+ 2)zn+1∂z.

Corollary 171.

When k = −2, all of the Sn are central.

Corollary 172.

In M(λ, −2) we have many singular vectors: for example, ∏n<0 S
mn
n ⋅ vλ,−2 is singular.



□

It’s possible to prove this in several different ways. First, a weaker version:

Proof.
Take λ → ∞, then the leading term in Sn comes from h[0] ⋅ h[n], which is just h[n], hence the
leading term is a PBW monomial in the PBW basis e[r]

r<0

, f[s]

s≤0

, h[n]

n<0

∈ n̂−, which is known to be a

basis in M(λ, k).

The stronger version:

Proof.
For n < 0 we can consider grPBW Sn(λ) ∈ S(n̂−) (associated graded with respect to PBW). The
formula is given by

Proposition 173.

All of these singular vectors are linearly independent.

Lemma 174.

For any k ∈ C and Weyl-generic λ, then all monomials ∏r<0 e[r]
kr∏s≤0 f[s]

ls∏n<0 S
mn
n ⋅ vλ,k

forms a basis of Mλ,k. (Note that the Sn do not commute with each other! But that’s ok; choose
some arbitrary order, as we did here.)

  

Lemma 175.

Consider the images of all Sugawara elements

Z(Ũ(ŝl2)−2)

center

→ (U(ŝl2)/U(ŝl2) ⋅ (n̂+,h[0] − λ, c+ 2))
b̂+

↪ U(n̂−).

(Note that this is the same as using the completion, since we are quotient. Also, the quotient is just a
module, but the b̂+-invariants form an algebra.)
Then suppose that Sn ↦ Sn(λ) under the composite of these maps; for n ≥ 0, then Sn ↦ 0. The
claim is that for n < 0, the Sn(λ) stay algebraically independent.



–

–

–

grPBWSn(λ) = ∑ e[r]f[s]

survives

+ f[r]e[s] +
1
2
h[r]h[s]/e[0] = h[0] = 0.
–

r+s=n
r<0, s≤0





□

We can prove this by taking differentials at each point and checking that the differentials are
linearly independent:

Then the only term that survives in Sn is e[n] (see the underbrace above). The e[n] are linearly
independent; this means that the differentials of the Sn(λ) are linearly independent at some
point, hence the Sn(λ) are algebraically independent overall.

To summarize, we reduced the problem to showing algebraic independent of certain
polynomials, and the natural way to prove that is to compute their differentials (at some chosen
point) and check that they’re linearly independent. So from this, we see the size of the space of
singular vectors in a Verma module at the critical level k = −2.

We’ll start with this theorem next time.

Nov 17
Characters of ĝ-modules in category-O

Let N  be a category-O module over g̃. (We consider the extended Lie algebra g̃ because we
want to keep the grading with respect to d; without this grading, the weight spaces are infinite-
dimensional, and the characters would not be well-defined. With d, the weight spaces are finite-
dimensional, making the characters well-defined.)

dxgrPBWSn(λ)
f[0]=1, e[r]=f[r]=h[r]=0, r<0

.
–∣––Corollary 176.

Dν(λ) is divisible by (c+ 2)E where

where P(μ) is the Kostant partition function, i.e. the number of ways to write μ =∑α>0 nαα (note
that Kostant partition function has a generating formula ∏α>0

1
1−tα ).

E =
∞

∑
m=1

∞

∑
n=1

P(ν −mn ⋅ λ∨

all positive imaginary roots

),

Theorem 177 (Kac-Kazhdan).

Dν(Λ) = ∏
α∈Φ+

∞

∏
n=1

(2⟨λ+ ρ,α⟩− n ⋅ ⟨α,α⟩).



We know these characters when N = M(λ̂) is a Verma module. Then

If we want to know the character of any category-O module, then by Jordan-Holder, we need to
know the character of every simple module. So what we want is the characters of L(λ̂), the
simple quotients of M(λ̂).

Definition 178.

We define the character of N  to be

chN = ∑
ν weights of N

tν dimNν.:

chM(λ̂) = tλ̂ ⋅ ∏
α∈Φ̂+

1
1 − t−α

.

Example 179.

For Weyl-generic λ̂, then L(λ̂) = M(λ̂), so we know the character in this situation.

Example 180.

In the codimension 1 situation, let λ̂ be generic with the property 2⟨λ̂+ ρ̂,α⟩− n⟨α,α⟩ = 0. As we
know from the determinant of the Shapovalov form, the Verma module becomes reducible iff this
equation is satisfied for some root α and some n. Then depending on whether the root is real or
imaginary, we can define the corresponding irreducible module.

Proof.
M(sα ⋅ λ̂) is the radical of the Shapovalov form (which is nondegenerate when restricted to this

Proposition 181.

Suppose we have λ̂ satisfying 2⟨λ̂+ ρ̂,α⟩− n⟨α,α⟩ = 0 for some real α and nonnegative
integer n. There exists a unique submodule M(sα ⋅ λ̂) ⊂ M(λ̂), and
L(λ̂) = M(λ̂)/M(sα ⋅ λ̂). As a corollary, the character of L(λ̂) is just the difference of the
characters of the Verma modules, so we get

chL(λ̂) =
tλ̂ − tsα⋅λ̂

∏
α∈Φ̂+

(1 − t−α)
.



Now let’s switch to some examples which are in some sense opposite.

Integrable ĝ-modules and their characters
Why are we interested in these? In the finite-dimensional case, in general, computing the
character of L(λ) is difficult: it involves some Kazhdan-Lusztig conjecture. But as we saw, for λ
close to being generic, we can compute the character. The other case where it’s possible to
compute the character is the opposite scenario, when λ̂ is dominant and integral, with the Weyl
formula. In the case of affine Kac-Moody Lie algebras, the situation is similar.

First, we need to know: what is an integrable module? For ĝ, integrable modules are the infinite-
dimensional analogue of finite-dimensional irreducible modules.

□
submodule), and this is the maximal proper submodule.

In this case, the computation of the character is easy. In general, it is much harder, and we have the
Kac-Kazhdan conjecture:

This means that we can mod out by all of the imaginary roots.

In fact this is a theorem, but very difficult! It was first proved for ŝl2 by Wakimoto, and the
construction from the last homework proves it: you can construct some irreducible modules for
generic λ̂ with precisely the character given above. For general ĝ it was proven by Feigen-Frenkel,
by generalizing the construction of Wakimoto modules to the general case.

Conjecture 182 (Kac-Kazhdan).

Suppose λ̂ is generic with 2⟨λ̂+ ρ̂,α⟩ = 0 for imaginary α (⟺  the level k = −h∨ the
Coxeter number, and λ is generic). Then

chL(λ̂) = tλ̂ ⋅ ∏
α∈Φ̂real

+

1
1 − t−α

.

Definition 183 (integrable module).

Let N ∈ O(g̃) be a category-O module. Then N  is called integrable if it is integrable with respect
to any sl2 formed by a simple root α (namely, with respect to the Lie algebra Span{eα, fα,hα}).

In particular, we have the sl2 triples formed by the simple roots for g̃ coming from g, but then we
have one more: we also need to check the sl2-triple Span{tfθ, c− hθ, t−1eθ}.



This naturally leads us to our next question. Which of the L(λ̂) are integrable?

We have a necessary condition: the highest weight λ̂ must be dominant and integral with
respect to any of these sl2. In other words,

This is already very restrictive. Explicitly: we can assume d acts by 0 on the highest weight, so
λ̂ = (λ, k, 0) can be expressed via coordinates via the action on h, the level (action of Cc), and
Cd (set to 0 here). Then the necessary condition implies that λ is dominant integral, i.e.
2⟨λ,α⟩
⟨α,α⟩ ∈ Z≥0 for all simple roots α of g, and k ∈ Z. Finally we need to check what conditions the

affine root θ imposes. What we get is (from the fact that the Cartan representative of that sl2-
triple is c− hθ) the condition 2⟨λ,θ⟩

⟨θ,θ⟩ ≤ k.

Proof.
We know that L(λ̂) is a quotient of M(λ̂). Fix α simple. Then we have a singular vector inducing
the embedding M(sα ⋅ λ̂) ⊂ M(λ̂). Therefore the surjection M(λ̂) ↠ L(λ̂) factors through the
quotient M(λ̂) ↠ M(λ̂)/M(sα ⋅ λ̂).

2⟨λ̂,α⟩
⟨α,α⟩

∈ Z≥0 for all simpleα.

Example 184.

If k = 0, there is only possibility: λ = 0 ⟹ λ̂ = 0, so the only integrable module is the trivial
one, L(0̂).

Example 185.

If k = 1, then in the ŝl2 case, we have exactly two possibilities: L(0, 1) and L(1, 1).

Proposition 186.

The necessary condition is also sufficient.
In other words, L(λ̂) is integrable iff, when writing λ̂ = (λ, k, 0), the following two conditions are
satisfied:

for all simple roots α of g, that 2⟨λ,α⟩
⟨α,α⟩ ∈ Z≥0,

2⟨λ,θ⟩
⟨θ,θ⟩ ≤ k.



□

We want to show that M(λ̂)/M(sα ⋅ λ̂) is already integrable with respect to the sl2

corresponding to α. But the space generated by this sl2 from the highest vector v
λ̂
 is finite-

dimensional. So we have the space

for some power m; this is a finite-dimensional sl2-module. Now everything can be obtained from
the ĝ-action, so we have a surjection of sl2-modules

Now the quotient (right side of tensor) is a finite-dimensional sl2-module, while the U(ĝ) is a
direct sum of finite-dimensional sl2-modules. (This is because ĝ is itself a direct sum of finite-
dimensional g-modules, hence is a direct sum of finite-dimensional sl2-modules, with respect to
the adjoint action.) So this tensor product is integrable, hence the image M(λ̂)/M(sα ⋅ λ̂) is also
integrable, and finally the image of the surjection onto L(λ̂) is also integrable, proving the result.

This means that we have a classification of integrable irreducible ĝ-modules, and it is the
same as in the finite-dimensional case. We just want to compute the characters.

Computing chL(λ̂)

We want to express chL(λ̂) as a linear combination of chM(μ̂). However, we don’t have the
finite length property, so we have to hope that we can represent chL(λ̂) as an infinite sum of
the chM(μ̂). Fortunately, this turns out to be possible; not only that, it makes sense, because all
of the Verma modules have a grading with respect to operator ad d, so the character is a power
series in several variables, one of which accounts for the eigenvalues of d. Let’s use the
variable q to keep track of the grading with respect to d. (In this way, the −r graded component
with respect to d will constitute the coefficient of q r.)

The basic idea is as follows. If we have two submodules M(μ̂1) and M(μ̂2) inside L(λ̂), then
first we mod out M(μ̂1), which corresponds to subtracting chM(μ̂1) from chL(λ̂). Then we want
to mod out by the image of M(μ̂2). But this is not actually subtracting chM(μ̂2), because M(μ̂1)

and M(μ̂2) intersect nontrivially; so we need to also add back in the intersection. The
intersection has a highest weight vector, which then generates another Verma submodule, and
so on.

After infinitely many steps, we will get chL(λ̂) as an infinite sum of characters of Verma
modules, but whose coefficients are formal power series in q. This is actually well-defined!

Why are integrable modules easier than generic ones? This is because any integrable module
L(λ̂) has an action of SL2 corresponding to any simple root α. We can take

U(sl2)vλ̂/f
m
α v

λ̂

U(ĝ) ⊗ (U(sl2)vλ̂/f
m
α v

λ̂
) ↠ M(λ̂)/M(sα ⋅ λ̂).

( )



□

This is an invertible operator which takes a weight space corresponding to μ̂ to a weight space
corresponding to sα(μ̂). In other words, we have a map

This means that the character is stable with respect to the affine Weyl group:

Combining these two properties of the characters, we find:

Proof.
We know that it’s a linear combination of Verma modules, hence it must be of this form for some
coefficients aμ̂. On the other hand, by Proposition 182, the character is stable under Ŵ . Note
that on the denominator, sα pretty much preserves the product except it swaps −α ↦ α, hence
it sends (1 − t−α) ↦ 1 − tα = −tα(1 − t−α). To compensate for this, the coefficients of tν and
tsa⋅ν should be negatives of each other; more generally, the coefficients of tν and tw⋅ν should
differ by a sign of (−1)w. So the character must be of the form above.

The last statement is clear since the weight space of λ̂ is one-dimensional; it’s true in M(λ̂),
and L(λ̂) is a quotient of the Verma module.

s̃α = ( ) ∈ SL2 ↷ L(λ̂).:
0 1
−1 0

s̃α : L(λ̂)μ̂ → L(λ̂)sα(μ̂).

Proposition 187.

Suppose L(λ̂) is integrable. Then chL(λ̂) is stable with respect to Ŵ , generated by all simple
reflections sα (for α a simple root).

Proposition 188.

Suppose L(λ̂) is integrable. Then

where the product in the denominator is counted with multiplicity. Furthermore, aλ = 1.

chL(λ̂) =
∑dominant μ̂∑w∈Ŵ

aμ̂(−1)wtw⋅μ̂

∏
α∈Φ̂+

(1 − t−α)
,

Theorem 189 (Weyl-Kac formula).

In Proposition 183, aμ̂ = 0 for all μ̂ ≠ λ̂.
In other words, if L(λ̂) is integrable, then



The idea is to use the Casimir operator, which prohibits all other Verma modules except those
in the (Ŵ , ⋅)-orbit of λ̂.

For finite-dimensional g, this is really easy, because there are many Casimir elements, and
computing the eigenvalues of all the central elements, we get many conditions (the eigenvalues
have to be the same on all Verma modules), but it’s known that the eigenvalues are only the
same for those weights in the orbit of the Weyl group. In our infinite-dimensional case, we don’t
have so many central elements: we have only the one quadratic element, but it turns out this is
still sufficient to prove this result.

Nov 20
Weyl-Kac formula for characters
Today we will prove Theorem 184 (Weyl-Kac formula), which is a formula for the character of an
integrable L(λ̂).

Let’s recall the setup. In fact, this all works for any Kac-Moody Lie algebra, but for us we’ll focus
on ĝ, an affine Kac-Moody Lie algebra. In fact we need to consider the extended affine Kac-
Moody Lie algebra g̃, with Cartan decomposition

We also have an invariant symmetric form ⟨, ⟩ which pairs zng with z−ng, after fixing some
invariant symmetric form on g. We also need to specify what it does on c, d:

where the product in the denominator is counted with multiplicity.

chL(λ̂) =
∑

w∈Ŵ
(−1)wtw⋅λ̂

∏
α∈Φ̂+

(1 − t−α)
,

Remark 190.

By “with multiplicity,” we mean that α is counted dim ĝα number of times. In the finite-
dimensional case, each subspace gα has dimension 1, but this is not true in the infinite-dimensional
case.

g̃ = n̂−

n−⊕z−1⋅g[z−1]

⊕ h̃

h⊕Cc⊕Cd

⊕ n̂+

n+⊕z⋅g[z]

.  

⟨c, d⟩ = 1,
⟨c, zng⟩ = 0,
⟨d, zng⟩ = 0.



In particular, the restriction of this form to h̃ is non-degenerate, hence we obtain an identification

This allows us to talk about roots, weights, etc.

Now, we need some basis in g̃. For any positive root α ∈ Φ+, we have root spaces ĝα ⊂ g̃.
However, unlike in the finite-dimensional case, these subspaces may not be one-dimensional.

Let’s pick some basis of ĝα, given by e1α,… , enα
α . This has a dual basis (with respect to the inner

form, which is just a basis of ĝ−α) given by e1−α,… , enα
−α.

To have a basis for all of g̃, we need a basis of h̃. First we start with the simple roots αi ∈ Π̂. For
the usual simple roots coming from g, we take the corresponding hαi

∈ h ⊂ h̃. The last simple
root α0 coming from the highest root θ of g, we define hα0 = c− hθ. We also have the dual
basis ωi (with respect to the invariant form), which are the fundamental weights.
Lastly, we have the element d, completing the basis.

Casimir operator
Naively, it should be the sum over the basis and the dual basis: ∑ xax

a. Unfortunately, there is
a problem: this element’s action on category-O representations is not well-defined. So we need
something which is well-defined.

Recall that in sl2, the Casimir is C = ef + fe+ 1
2 h

2, but we can rewrite it as 2fe+ 1
2 h

2 + h. The
former is simpler to write, but its action is not well-defined on category-O. So we want to
generalize the latter presentation.

h̃ ≅h̃∗.

Remark 191.

In the case of g̃, the subspace ĝα has dimension greater than 1 precisely when the projection to the
usual Cartan is zero.

:

Definition 192 (Casimir).

We define the Casimir operator for g̃ to be

where ρ̂ =∑ ωi is the sum of the fundamental weights.

C = 2 ∑
α∈Φ+

nα

∑
i=1

ei−αe
i
α + ∑ωi ⋅ hαi

+ 2hρ̂,:



We can prove this is central by checking its commutator with the Chevalley generators. It’s clear
it commutes with anything in h̃, so then it suffices to compute its commutator with eαi  and fαi .

Main ideas in proof

Let λ̂ be a weight, and M(λ̂) be a Verma module. This means that we have

The Casimir preserves the highest weight space, hence acts the highest weight vector by a
scalar, and since it commutes with everything and the Verma module is generated by the
highest weight vector, this implies that the Casimir acts by a fixed scalar on the entire Verma
module. This scalar depends only on λ̂. Let us denote λ = λ̂|h. Then

The first main idea behind proving Theorem 184 (Weyl-Kac formula) is that if we write

then we know that the Casimir acts by the same scalar on all of the M(μ̂) that appear in the
formula, and this scalar is the same as the scalar on L(λ̂) (consequently, on M(λ̂)). This is
because in the Grothendieck group, we have

and then we can project onto the summand in K0 corresponding to the eigenvalue of the
Casimir.

Unfortunately, this is not sufficient for writing the character, because there are still too many
possibilities. But it’s a start.

Example 193.

For g̃, we have already seen the Casimir element: it is related to the Sugawara element S0 by

For example, for g = sl2, the Casimir element in g̃ is C = S0 + 2(c+ 2)d.

C = S0 + 2(c+ h∨)d.

⟨λ̂,hαi
⟩ = λi,

⟨λ̂, c⟩ = k,

⟨λ̂, d⟩ = n.

:

C|
M(λ̂) = (⟨λ,λ+ 2ρ⟩+ 2(c+ h∨)n)id.

chL(λ̂) = ∑ aμ̂ ⋅ chM(μ̂),

[L(λ̂)] = ∑ aμ̂[M(μ̂)],



□

The second main idea is if L(λ̂) is integrable, then we have elements s̃αi
= ( )

corresponding to simple roots αi and the corresponding sl2 that it generates. These elements
send

This means that chL(λ̂) is Ŵ -invariant. From this, we recover Proposition 183:

where the dot action is given by w ⋅ μ̂ = w(μ̂+ ρ̂) − ρ̂ and a
λ̂
= 1, and the product in the

denominator is taken with multiplicity (see Remark 185). A further explanation is given in the
proof to Proposition 183.

The third observation is that aμ̂ ≠ 0 only if μ̂ < λ̂, i.e. λ̂− μ̂ is a nonnegative integer combination
of simple roots αi.

Now for the key lemma.

Proof.
We want to show that ⟨λ̂+ ρ̂, λ̂+ ρ̂⟩ > ⟨μ̂+ ρ̂, μ̂+ ρ̂⟩ (since this is equivalent to the statement in
the lemma, which is easily checked by expanding the terms). Rearranging, we get

since the right side of the inner product is a nonnegative integer combination of simple roots,
and the left side of the inner product is dominant.

This proves Theorem 184 (Weyl-Kac formula), which we’ll state again for convenience.

0 1
−1 0

s̃αi
: L(λ̂)ν → L(λ̂)sαi(ν).

chL(λ̂) =
∑dominant μ̂∑w∈Ŵ

aμ̂(−1)wtw⋅μ̂

∏
α∈Φ̂+

(1 − t−α)
,

Lemma 194.

If μ̂ < λ̂ and both are dominant, then ⟨λ̂, λ̂+ 2ρ̂⟩ > ⟨μ̂, μ̂+ 2ρ̂⟩.

⟨λ̂+ ρ̂, λ̂+ ρ̂⟩− ⟨μ̂+ ρ̂, μ̂+ ρ̂⟩ = ⟨ λ̂+ μ̂+ 2ρ̂

dominant, ⟨−,αi⟩>0

, λ̂− μ̂

=∑ niαi, ni≥0

⟩ > 0 

Corollary 195.

In Proposition 183, the coefficients aμ̂ for dominant μ̂ are all zero whenever μ̂ ≠ λ̂.



Next time, we’ll even see how to derive the Jacobi triple product identity from Corollary 192.

Nov 22

Theorem 196 (Weyl-Kac formula).

When L(λ̂) is integrable, then

where the product in the denominator is counted with multiplicity.

chL(λ̂) =
∑

w∈Ŵ
(−1)wtw⋅λ̂

∏
α∈Φ̂+

(1 − t−α)
,

Corollary 197.

We also obtain a formula for the denominator:

∏
α∈Φ̂+

(1 − t−α) = ∑
w∈Ŵ

(−1)w tw⋅0.

Example 198.

Let g = sl2. The roots of ŝl2 are

The positive roots are

Let’s denote by t the variable corresponding to the first coordinate and q the variable corresponding
to the third coordinate. Then

by Theorem 55 (Jacobi triple product identity).

Φ̂ =
⎧
⎨⎩
(2, 0,n) n ∈ Z,
(−2, 0,n) n ∈ Z,
(0, 0,n) 1 ≠ n ∈ Z.

Φ̂+ =
⎧
⎨⎩
(2, 0,n) n ≥ 0,
(−2, 0,n) n > 0,
(0, 0,n) n > 0.

∏
α∈Φ̂+

(1 − t−α) =
∞

∏
n=1

(1 − t2qn−1)(1 − t−2qn)(1 − qn) = ∑
m

(−1)mt2mq
m(m+1)

2



Characters of integrable ŝl2-modules

The goal of today is to relate these characters (which we computed last time, see Theorem 191
(Weyl-Kac formula)) to special and classical functions, especially theta functions.

Setup for ŝl2:
We have the Cartan g̃ ⊃ h̃ ≅h̃∗ = Span{α, c, d} (isomorphism induced by nondegenerate
invariant scalar product). We have ⟨α,α⟩ = 2 and ⟨c, d⟩ = 1.
The simple roots are α0 = c− α and α1 = α. The fundamental weights are ω0 = d and
ω1 = 1

2 α+ d. Therefore ρ̂ = 2d+ 1
2 α.

Each of these simple roots defines a simple reflection. Let μ̂ = kd+ 1
2 ℓα+ nc be a generic

element; if we consider μ̂ as a weight, then k represents the level, ℓ the highest weight of sl2.
Then

Together, sα1  and sα0  freely generate the affine Weyl group Ŵ . In particular, this means that
Ŵ = ⟨s0, s1 ∣ (s0)2 = (s1)2 = 1 ⟩, and so any even element is just (s1s0)r for some r, while any
odd element is just (s1s0)rs1 for some r.

We can view this as an affine reflection group of the affine line A1, with one reflection about 0
and another reflection about 1. Then s1s0 is just a shift. Let’s make the convention

Then by induction, we can compute the action of tr:

Character formula

One way to understand the character is by trace:

To relate it with classical analysis, we should renormalize h̃ ∋ h = 2πi ( 1
2 zα− τd+ uc). Then

Theorem 191 (Weyl-Kac formula) becomes

s1 = sα1 : α ↦ −α,
c ↦ c,
d ↦ d,

s0 = sα0 : α ↦ −α+ c,
c ↦ c,
d ↦ d+ α− c.

:

:

tr = (s1s0)r.:

tr : α ↦ α+ 2rc,
c ↦ c,
d ↦ d− rα− r2c.

chL = trL exp(h) : h̃ → C.



Numerator

Let’s understand the numerator as a function of z, τ,u. Write μ̂ = λ̂+ ρ̂ = 1
2 ℓα+ kd+ nc.

When (−1)w = 1, then w = tr for some r ∈ Z, so the numerator (ignoring the factor of ⟨−ρ̂,h⟩) is

If we replace r by ℓ
2k − r we get

When (−1)w = −1 we get

The key point is that these are almost Jacobi-Riemann theta functions.

This means that the numerator of ch
L(λ̂)

 is (up to some factor)

The denominator is

ch
L(λ̂)

(z, τ,u) =
∑

w∈Ŵ
exp(⟨w(λ̂+ ρ̂) − ρ̂,h⟩) ⋅ (−1)w

∏β∈Φ+
(1 − exp(−βih))

.

:

exp⟨tr(μ̂) − ρ̂,h⟩ = exp 2πi(( 1
2
ℓ − kr)z− (n+

1
2
rℓ − r2k)τ + ku).

∑
r∈ ℓ

2k +Z

exp 2πi(krz+ (kr2 − (n+
ℓ2

4k
))τ + ku).

− ∑
r∈− ℓ

2k +Z

exp 2πi(krz+ (kr2 − (n+
ℓ2

2k
))τ + ku).

Definition 199 (theta function).

We define the theta function to be

Θℓ,k(τ, z,u) = exp(2πi ku) ∑
r∈ ℓ

2k +Z

exp (2πi k(r2τ + rz)).:

(Θℓ+1,k+2 −Θ−ℓ−1,k+2)q
n+ (ℓ+1)2

4(k+2) exp⟨—ρ̂,h⟩, q = exp(2πiτ).

(Θ1,2 −Θ−1,2)q
1
8 exp⟨−ρ̂,h⟩.

Theorem 200 (character of integrable sl2-module).

The character of integrable L(λ̂) for ŝl2 where λ = kd+ 1
2 α+ nc is given by

Θ Θ



For λ̂ = 0, we actually get the Jacobi triple product identity.

Our next goal is to compute chL(0,1), corresponding to λ̂ = d.

Computing chL(0,1)

According to Theorem 195 (character of integrable sl2-module), we have

In fact, it has a much simpler form:

In fact there are several ways of proving this. One, which we may discuss later, is by
constructing L(0, 1) as a sum of Fock spaces, and using that the character of a Fock space is

1
φ(q) . The way we’ll see now is via the Kac-Peterson multiplication rule for theta functions. In
fact the proof is a fairly straightforward, if lengthy, computation, so we only give a very brief
sketch.

The idea of the proof is to write the product as

ch
L(λ̂)

(z, τ,u) = qsλ̂
Θℓ+1,k+2 −Θ−ℓ−1,k+2

Θ1,2 −Θ−1,2
,

s
λ̂
=

(ℓ + 1)2

4(k+ 2)
+ n−

1
8
.

chL(0,1) = q
1
24
Θ1,3 −Θ−1,3

Θ1,2 −Θ−1,2
.

Proposition 201 (character of L(0, 1)).

The character of the ŝl2-module L(0, 1) is

chL(0,1) =
Θ0,1

φ(q)
, φ(q) =

∞

∏
n=1

(1 − qn).

Theorem 202 (Kac-Peterson, multiplication rule for theta functions).

Θℓ,k ⋅ Θℓ′,k′ = ∑
j∈Z/(k+k′)Z

ψ
(k,k′,ℓ,ℓ′)
j (q) ⋅ Θℓ+ℓ′+2kj,k+k′ ,

ψ
(k,k′,ℓ,ℓ′)
j (q) = ∑

r

qkk
′(k+k′)r2 .



and we can even assume u = 0 (as nothing really depends on u). Then by making the clever
change of variables

Now there is a bijection between pairs (r, r′) and triples (s, s′, j); changing the variables, we get
the result.

Now for the sketch of the proof of Proposition 196 (character of L(0, 1)). We’ll complete this
next time, but we basically apply Theorem 197 (Kac-Peterson, multiplication rule for theta
functions) and Theorem 57 (Euler pentagonal number theorem) to get

Nov 27
Integrable modules over ŝl2; Virasoro algebra
Let’s first consider more generally some finite-dimensional simple g (not necessarily sl2), and its
corresponding affine Kac-Moody Lie algebra ĝ. Denote by Oint(g̃) the category of integrable
category-O(g̃) modules. We have already classified all of the simple objects in this category in
Proposition 181. Therefore, to understand the category Oint(g̃) completely, it remains to
understand how to build these modules from simple ones.

Proof.
The statement of simple objects was already proven in Proposition 181.

First, we explicitly describe L(λ̂).

Θ ⋅ Θ = ∑ qkr
2+k′r′2 exp 2π(kr+ k′r′)z,

r,r′

r= ℓ
2k +i, i∈Z

r′= ℓ′

2k′
+i′, i′∈Z

s : (k+ k′)s = r− r′ ∈
ℓk′ − ℓ′k+ 2kk′ ⋅

j

(i− i′)
2kk′(k+ k′)

+ Z,

s′ : (k+ k′)s′ = kr− k′r′ ∈
ℓ + ℓ′ + 2kj
2(k+ k′)

+ Z.



Θ1,0(Θ1,2 −Θ−1,2) = q
1
24 φ(q)(Θ1,3 −Θ−1,3).

Theorem 203.

Category Oint(g̃) is semisimple, and simple objects are L(λ̂) with λ̂ dominant integral (i.e., for any
simple coroot α∨

i , we have ⟨λ̂,α∨
i ⟩ ∈ Z≥0; see Proposition 181).



□

Proof.
First, the surjection from the quotient onto L(λ̂) is clear: we already know that the M(si ⋅ λ̂) are
submodules, so they must vanish in the surjection from M(λ̂). It remains to show that this
quotient is simple. First, note that the quotient is integrable, as it is integrable with respect to
every simple root sl2, as we mod out by every Verma module corresponding to a simple
reflection. It is also a highest-weight module. Suppose that this quotient were not simple; then
there is a singular vector vμ̂ of weight μ̂. Now we know that λ̂− μ̂ is a nonnegative integer
combination of simple roots, i.e. μ̂ < λ̂; on the other hand, since the quotient is a highest-weight
module, and this μ̂ is a singular vector generating a submodule, μ̂ must be dominant integrable.
But then Lemma 189 tells us that this is impossible: the Casimir operator will have different
eigenvalues on these two submodules.

Now let V ∈ Oint(g̃) be any integrable object, and let V sing = V n̂+  be the subspace of singular
vectors. Then

is the direct sum of its weight components. For every μ̂ in this decomposition, a singular vector
induces a map M(μ̂) → V  factoring through L(μ̂), the unique integrable quotient. This means
that the submodule in V  generated by V sing is actually just the direct sum of the integrable
quotients (counted with multiplicity):

It remains to show that this is in fact all of V . A priori, this might be false, and V /V ′ ≠ 0. So
suppose for the sake of contradiction that V /V ′ ≠ 0. Take a highest weight vector vμ̂ ∈ V /V ′

and lift it to ṽμ̂ ∈ V . Then n̂+ṽμ̂ ⊂ V ′. So there is x ∈ U(n̂+) such that x ⋅ ṽμ̂ = vγ̂ ∈ V ′ is a
highest weight vector. Now observe that

Lemma 204.

When L(λ̂) is integrable, then it is the quotient of the Verma module M(λ̂) by the sum over its
Verma submodules M(si ⋅ λ̂) generated by simple reflections si:

L(λ̂) = M(λ̂)/ ∑
i

M(si ⋅ λ̂).

:

V sing = V n̂+ = ⨁
μ̂

V
n̂+

μ̂

V ⊃ V ′ = U(g̃)V sing = ⨁
μ̂

L(μ̂).:

γ̂ = μ̂+ ∑niαi, ni ∈ Z≥0.



□

Moreover, the eigenvalue of Casimir on ṽμ̂ and vγ̂ are the same. Also, both μ̂ and γ̂ are
dominant. So we arrive at the same scenario: Lemma 189 tells us this is impossible, so
V /V ′ = 0 and V = V ′ =⨁μ̂ L(μ̂) (counted with multiplicity).

So this means that we have a very nice subcategory Oint ⊂ O. However, despite the nice
property of being semisimple, Oint has a rather complicated structure: the tensor product rule
(for L(λ̂)) is rather complicated.

In order to decompose the tensor products of the irreducible integrable modules even for the
case of g = sl2, we need some recollections of important identities.

Recollection. Recall Definition 194 (theta function):

Also recall Theorem 195 (character of integrable sl2-module), which states that for
λ̂ = kd+ 1

2 ℓα+ nc, then

The basic idea (which works for arbitrary g, but we work with sl2 here to make use of the
concrete connection to theta functions) is to just multiply the characters and attempt to write it
out as a linear combination of characters of irreducible integrable modules (since the tensor
product is clearly still integrable, so by semisimplicity it decomposes into a direct sum of
irreducible integrable modules). Naturally, we’ll need Theorem 197 (Kac-Peterson, multiplication
rule for theta functions):

Now once we have this formula, we can deduce Proposition 196 (character of L(0, 1)), which
we’ll restate here for convenience.

Θℓ,k(τ, z,u) = exp(2πi ku) ⋅ ∑
r∈ ℓ

2k +Z

exp (2πi k(r2τ + rz)).

ch
L(λ̂)

(z, τ,u) = qsλ̂
Θℓ+1,k+2 −Θ−ℓ−1,k+2

Θ1,2 −Θ−1,2
,

s
λ̂
=

(ℓ + 1)2

4(k+ 2)
+ n−

1
8
.

Θℓ,k ⋅ Θℓ′,k′ = ∑
j∈Z/(k+k′)Z

ψ
(k,k′,ℓ,ℓ′)
j (q) ⋅ Θℓ+ℓ′+2kj,k+k′ ,

ψ
(k,k′,ℓ,ℓ′)
j (q) = ∑

r

qkk
′(k+k′)r2 .

Remark 205.

There may be a minor mistake in the formulas here.



□

Proof.
We need to prove that

So we will use Theorem 197 (Kac-Peterson, multiplication rule for theta functions) to expand
the left-hand side:

by Theorem 55 (Jacobi triple product identity).

Proposition 206 (character of L(0, 1)).

The character of the ŝl2-module L(0, 1) is

(This is a copy of Proposition 196 (character of L(0, 1)).)

chL(0,1) =
Θ0,1

φ(q)
, φ(q) =

∞

∏
n=1

(1 − qn).

Θ0,1 ⋅ (Θ1,2 −Θ−1,2) = q
1
24 φ(q)(Θ1,3 −Θ−1,3).

Θ0,1 ⋅ (θ1,2 −Θ−1,2) = (Θ1,3 −Θ−1,3) ⋅ ∑
r∈− 1

12 +Z

q6r
2
− ∑

r′∈ 5
12 +Z

q6r
′2

,

= (Θ1,3 −Θ−1,3) ⋅(q
1
24 ∑

j∈Z

(−1)jq
3j2+j

2 ),

= (Θ1,3 −Θ−1,3) ⋅ q
1
24 ⋅ φ(q),

⎛⎜⎝ ⎞⎟⎠Corollary 207.

We can describe L(0, 1) as the sum of Fock spaces.

where Fr is the Fock space for the copy of the Heisenberg algebra {h[n] ∣ n ∈ Z} ⊂ s̃l2.

More concretely, Fr is generated by vr where h[n]vr = 0 for n > 0, h[0]vr = 2r vr, and
dvr = −r2 vr.

L(0, 1) = ⨁
r∈Z

Fr,

Example 208.

Let g = sl2. Let’s try to decompose L(0, 1) ⊗ L(ℓ, k). It turns out that:

Theorem 209.



Nov 29
Today’s main focus will be:

Goddard-Kent-Olive construction of representations of Virasoro

But first, let’s finish what we were discussing from last class.

Tensor product rule for ŝl2

It is possible to write the product of the characters of integrable modules as a linear
combination of the characters of integrable modules:

where the coefficients are power series in q = exp(τ).

Proof.
The proof is found in Kac-Raina “Bombay lectures” and uses Theorem 197 (Kac-Peterson,
multiplication rule for theta functions).

First we have

The V is an infinite-dimensional space, but it is graded with respect to d (and has finite-dimensional
graded components). It is possible to write the character of V with respect to this grading, so it will
be a power series in q. It is very interesting; it even carries an action by V ir. We will discuss this
next time!

L(0, 1) ⊗ L(ℓ, k) = ⨁
r∈I

V(k, ℓ; r)

some multiplicity space

⊗ L(ℓ − 2r, k+ 1),

I = {r ∈ Z ∣ −
1
2
(k+ 1 − ℓ) ≤ r ≤

1
2
ℓ}.



chL(0,1) ⋅ chL(ℓ,k) = ∑
r

ψk,ℓ;r ⋅ chL(ℓ−2r,k+1)

Proposition 210.

Let r ∈ Z such that − 1
2 (k+ 1 − ℓ) ≤ r ≤ 1

2 ℓ. Then

ψk,ℓ;r =
1

φ(q)
∑
j∈Z

q (k+1)(k+3)j2+((ℓ+2)+2(ℓ+1−r)(k+2))j+(ℓ+1−r)2 .



□

This is a good thing for multiplication in the Weyl-Kac formula, because Θ0,1

φ(d)  is easy to multiply

by qsλ̂ Θℓ+1,k−Θ−ℓ−1,k

Θ1,2−Θ−1,2
. Then we just expand the product of characters using Theorem 195

(character of integrable sl2-module) and Theorem 197 (Kac-Peterson, multiplication rule for
theta functions) and after a lot of work, we get the result.

Goal: explain that ψ is a character of some Virasoro module.

We know from Nov 27 that the tensor product L(0, 1) ⊗ L(ℓ, k) decomposes into a direct sum of
irreducible integrable ŝl2-modules, with some multiplicity spaces Mr.

It will turn out that the multiplicity spaces Mr carry a V ir-action.

Θℓ,kΘℓ′,k′ = ∑
j

d
k,k′,ℓ,ℓ′

j (q)

=∑r q
kk′(k+k′)r2, r∈Z+ k′ℓ−kℓ′+2jkk′

2kk′(k+k′)

Θℓ+ℓ′+2kj, k+k′

⟹ chL(0,1) = q
1
24
Θ1,3 −Θ−1,3

Θ1,2 −Θ−1,2
=

Θ0,1

φ(d)
.



L(0, 1) ⊗ L(ℓ, k) = ⨁
r

Mr ⊗ L(ℓ − 2r, k+ 1).
↺
V ir

Example 211.

Baby example: for sl2-modules, we have

where λ1 > λ2. This decomposition can be obtained as the decomposition with respect to some
operator, namely the diagonal Casimir Δ(C) ∈ Δ(U(sl2)) ⊂ U(sl2) ⊗ U(sl2), given by the
Casimir the diagonal of sl2 inside the tensor product. Each summand in the decomposition is
uniquely determined by the eigenvalue of this diagonal Casimir, because C

L(λ)
= λ(λ+2)

2 .

In fact we can even describe the algebra of all operators commuting with the diagonal sl2 inside this
algebra:

where C (1) is the Casimir in the first copy, C (2) is the Casimir in the second copy, and Δ(C) is the
diagonal Casimir (which we related to C (1) and C (2) above).

L(λ1) ⊗ L(λ2) = L(λ1 + λ2) ⊕ L(λ1 + λ2 − 2) ⊕⋯+⊕L(λ1 − λ2)∣(U(sl2) ⊗ U(sl2))
Δ(sl2) = C[C (1),C (2),Δ(C)] = C[C (1),C (2), Ω],

Δ(C) = Δ(e)Δ(1) +⋯ = C (1) + C (2) + 2 e⊗ f + f ⊗ 3 +
1
2
h⊗ h

Ω

,:
⎛⎜⎝⎞⎟⎠



We want to do something similar in our case, with affine ŝl2.

Copying this strategy to our case, Mr is naturally a module over the centralizer subalgebra

(U(ŝl2) ⊗ U(ŝl2))
Δ(ŝl2)

, and even ( ˜
U(ŝl2)1 ⊗ U(ŝl2)k)

Δ(ŝl2)

 (because we specified the levels 1

and k, and since we’re in category O we can take the local completion, as generally speaking,
there may not be anything in the strict centralizer if we don’t take completion).

Idea: do the same thing we just did in the baby example, but for Sugawara.

Recollection on Sugawara elements
We have g ∋ xa,xa - dual bases with respect to ⟨, ⟩. Recall that

Then [Si,x[r]] = (constant depending on r) ⋅ x[r+ 1] (mod c = k) for x ∈ g. On the other hand,
[Si, −] is a derivation, and we already classified all of the derivations of the affine Lie algebras:
there are inner derivations, plus the Witt algebra. So this [Si, −] =? ⋅ zn+1∂z for some constant,
and this constant is easy to compute (for example we can check with x[1] for some x ∈ g); what
we get is that [Si, −] = 2(c+ h∨)zi+1∂z where h∨ is the Coxeter number. For sl2 we get 2(c+ 2).

Now define Li = − 1
2(c+2) Si and this generates a copy of Virasoro. The claim is that the

commutator between these guys is what we get from commutating the Witt algebra, plus
something which commutes with everything, giving us Virasoro.

Compute the central extension for sl2

We’ll also see how to generalize it.

Recall that in Virasoro, [Li,L−i] = 2iL0 + i3−i
12 c. This central extension is determined by a

cocycle, and there is a one-dimensional space of cocycles modulo coboundaries (so this
cocycle is unique up to scaling, after specifying that it is 0 on the input i = 1). To determine the
constant that c acts by, we compute the action of [L2,L−2] on any representation. For us, we
want to compute the constant that c acts by after identifying the Virasoro algebra with the space
of (modified) Sugawara elements. To compute the constant, we compute its action on the
highest vector (the vacuum vector v0) of V(0, k) = U(ĝ) ⊗U(g[z]+Cc) C = U(z−1g[z−1])v0, where
g[z] acts by 0 on C, and c acts by k. (So this is a bit smaller than the Verma module; it’s a
“Verma module” with highest weight 0 and level k, modulo n̂−.)

We now note that L>0v0 = 0, and moreover L0v0 = 0 as well, because all terms except the
Casimir of the finite g vanish, but this acts by zero as well because it’s the trivial representation
C. We also see that L−1v0 = (∑ xa[−1]xa[0])v0 = 0, since xa[0]v0 = 0. This means that
[L1,L−1] = 2L0 + 0 = 2L0, so in particular the cocycle is uniquely determined now by the
commutator [L2,L−2]. We find that

S(u) = : ∑
a

xa(u)xa(u) : = ∑Siu
−i−2.

:

( ( ))



□

□

It remains to use the following lemma.

Proof.
This is a g-invariant degree 0 element, so it is proportional to c. On the other hand, each term is
just c, and the xa form a basis, so there’s exactly dim g of them.

Finally we arrive at the central charge:

Proof. This follows from 23−2
12 c = 1

2
(dim g)k
k+h∨ .

We’ve found the central charge, but there’s more work to do! We still need to carry out the
strategy above, with the diagonal Casimir.

For next time: In U(ŝl2) ⊗ U(ŝl2) ⊃ Δ(ŝl2). Then we have Δ(Li) − L
(1)
i − L

(2)
i

 commuting with
everything in Δ(ŝl2). We will see that in fact these elements satisfy the Virasoro relations, so
from the general theory, we get a Virasoro-module structure on the multiplicity spaces Mr. Then
when we substitute the level 1 on the first tensor and generic on the second, then we get
generic Verma modules for Virasoro for the multiplicity spaces. And when we consider smaller
modules over the second tensor, then we get smaller multiplicity spaces, and this will help us to
study the representation theory of these objects.

Dec 1
Goddard-Kent-Olive construction of Virasoro reps

First: the Sugawara construction.

Let g be a simple Lie algebra. We have an embedding V ir ↪ Ũ(ĝ)k for any k ≠ −h∨.
Then

[L2,L−2]v0 = L2(−
1

2(k+ 2)
(e[−1]f[−1] + f[−1]e[−1] +

1
2
h[−1]2))v0,

= (∑xa[1]xa[−1])v0.

Lemma 212.

∑a [xa[1],xa[−1]] = (dim g) ⋅ c.

Proposition 213.

The central charge of this copy of Virasoro is c = (dim g)⋅k
k+h∨ .



where xa(u),xa(u) are dual bases of g with respect to ⟨, ⟩.
We can extend this construction to any reductive

The central charge of the Virasoro embedding can be computed as follows. For a simple Lie
algebra g, we have

As an example, for sl2, h∨ = 2, so c = 3k
k+2 .

In general,

(This includes abelian 1-dimensional g, then L(u) = 1
2 : a(u)2 :, and h∨ = 0.)

Now let g ⊃ p a reductive subalgebra. Then in the completed enveloping algebra Ũ(ĝ) we have
two copies of Virasoro: Lg

i  and Lp
i . We know that

This means that we can consider the differences

Proof.
We just compute:

Lg(u) =
1

2(k+ h∨)
⋅ (:∑xa(u)xa(u):)

g =
N

⨁
s=1

gs, Lg(u) =
N

∑
s=1

Lgs(u).:

[Li,Lj] = (i− j)Li+j + δi+j=0
i3 − i

12
c, c =

dim g ⋅ k
k+ h∨ .

c =
N

∑
s=1

cgs =
N

∑
s=1

dim gs ⋅ ks
ks + h∨

s

.

[Lg
i ,x[n]] = −n ⋅ x[n+ i] ∀x ∈ g,

[Lp
i , y[n]] = −n ⋅ y[n+ i] ∀y ∈ p.

L
g
i − L

p
i = Li ∈ Ũ(ĝ)

p̂

k.:

Proposition 214.

The Li satisfy the Virasoro relations

[Li,Lj] = (i− j)Li+j + δi+j=0
i3 − i

12
c, c = cg − cp.:



□

Main example

Let g = sl2 ⊕ sl2, and let p = Δ(sl2) be the diagonal.
Let’s consider specific levels: we want (some arbitrary) k for the first copy of sl2 and 1 on the
second copy.

On the level 1, we have the really nice module L(0, 1) which we already studied; it’s integrable
with highest weight 0.

Then the general theory we constructed gives us the following. Take any irreducible module
L(λ̂) of the level k. Then the tensor product L(λ̂) ⊗ L(0, 1) has level k+ 1. Now consider the
irreducible module with level k+ 1, L(μ̂). Then the space

[Li,Lj] = [Li,L
g
j − L

p
j ],

= [Li,L
g
j ], Li commutes with everything in Ũ(ĝ)

p̂

= [Lg
i ,L

g
j ] − [Lip,Lg

j ],

= [Lg
i ,L

g
j ] − [Lp

i ,Lj + L
p
j ],

= [Lg
i ,L

g
j ] − [Lp

i ,L
p
j ],

= (i− j)(Lg
i − L

p
i ) + δi+j=0

i3 − i

12
(cg − cp).

Corollary 215.

Let M ∈ O(ĝ)k and N ∈ O(p̂)k. Then Hom
p̂
(N ,M) is a “category-O”, i.e. upper bounded with

respect to the d-grading, module over V ir.

Example 216.

Let g = sl2 and p = h. Take a Verma module with generic λ for ŝl2. Then

Roughly, M(λ) is the tensor-cubed of a Fock space, i.e. it looks like C[e[n],h[n], f[n+ 1]]n<0.
That means that Nν should be something like the tensor-square of a Fock space, which is much
larger than the Verma for a Virasoro!

M(λ) = ⨁
ν

Nν ⊗ Fν

Fock space

.

Hom
ŝl2
( L(μ̂)

level k+1

,L(λ̂)

level k

⊗ L(0, 1)) 



is a module over V ir with size smaller than or equal to that of the Verma module over Virasoro
(at the very least, comparable in size).

How do we see this?

Consider M(ℓ, k) (the ŝl2-Verma module with highest weight ℓ with level k). Let (ℓ, k) be generic.
Then we can consider

is a direct sum of Vermas with highest weights being the highest weight of M(ℓ, k) (namely ℓ
and some weight of L(0, 1)).
Recall that

This means that we have the picture

Remark 217.

If we can understand this, then potentially this could give us constructions of many irreducible
Virasoro modules, from relatively easy constructions. Of course we can define Verma modules for
Virasoro, but it is a bit difficult to explore their irreducible quotients because we don’t have the
same nice structure as we have in the Kac-Moody case: we don’t have Weyl groups, we don’t have
reflections, we don’t have Casimir elements. But this is some construction which reduces at least
some of the constructions for Virasoro to that of ŝl2, which makes it very interesting.

M(ℓ, k) ⊗ L(0, 1) = ⨁
m∈Z

M(ℓ − 2m, k+ 1) ⊗ V(h, c)

representation of V ir,≅ Fock space


chL(0,1) =
Θ0,1

φ(q)
=

1
∏∞

n=1(1 − qn)
∑ z2mqn

2



□

Proof.
The highest degree component of V(h, c) with respect to d comes from

If we compute the eigenvalue of L0 on this space, we get 0⋅(0+2)
(1+2)⋅4 = 0.

The central charge is

So if we pick generic parameters, then we get generic modules for Virasoro. If we pick
something more special, we can get more special and smaller modules. Next time we will see
how these modules will give us Shapovalov determinants.

Dec 4
Kac formula for Shapovalov determinant for V ir
We consider the Verma module V(h, c) for the Virasoro algebra, where c is the central charge
and h is the highest weight. In other words, V(h, c) is generated by the highest vector vh,c which
is annihilated by all positive operators L>0vh,c = 0, and L0vh,c = h ⋅ vh,c, and also the central
element acts by c, i.e.

There are no further relations. Therefore, as vector spaces, V(h, c) is just U(V ir−)vh,c, where
V ir− = {Li ∣ i < 0}. In particular, the character of V(h, c) is given by

It turns out that the determinant of the Shapovalov form controls whether this Verma module is
irreducible or not. Recall that Dn is the determinant of the contravariant form on the weight

Proposition 218.

V(h, c) is the Verma module over V ir with highest weight h, central charge c, given by

c = 1 −
6

(k+ 2)(k+ 3)
, h = m2 +

ℓ(ℓ + 2)
4(k+ 2)

−
(ℓ − 2m)(ℓ − 2m+ 2)

4(k+ 3)
.

vℓ,k

highest, d=0

⊗ v−m,1

extremal, d=−m2

+…. 

c =
3k

k+ 2
+

3 ⋅ 1
1 + 2

−
3(k+ 1)
k+ 1 + 2

= 1 −
6

(k+ 2)(k+ 3)
.

[Li,L−i]vh,c = (2ih+
i3 − i

12
⋅ c)vh,c.

TrV(h,c)q
L0 = chV(h,c) =

qh

φ(q)
, φ(q) =

∞

∏
n=1

(1 − qn).



space V(h, c)n = {v ∈ V(h, c) ∣ L0v = (h+ n)v} (for n ∈ Z≥0). Also note that dimV(h, c)n = P(n)

, the partition number (i.e. number of partitions of n).

Proof.
What we already know:

If we assume that all of the “new” factors do not have common divisors, then the degrees of the
new factors are

≤
∂
∂u ∏

∞
n=1(1 − utn)−1|u=1

∏∞
n=1(1 − tn)

=
∂
∂u

u=1

log∏
n

(1 − tn) =
∞

∑
n=1

tn

1 − tn
.

So our naive expectation is that in Dn, we have new linear factors iff n = r ⋅ s, r, s ∈ Z>0. The
reality is not quite true (as seen on the homework).

The less naive expectation is that there are quadratic factors, corresponding to unordered pairs
(r, s), and the linear factors corresponding to n = r2 (i.e., pairs where r = s).

It turns out this less naive expectation is correct! We can prove this using GKO construction.
Plan: guess the quadratic factors Qr,s and give N ⊊ V(h, c) such that N ∩ V(h, c)n ≠ 0. It will
turn out that for infinitely many (h, c), that Qr,s(h, c) = 0.

We can regard the N  as follows. There exists a highest weight Virasoro module U with highest
weight (h, c) such that the dimension of the nth weight space dimUn < P(n). We will extract
this from the tensor product rule for the ŝl2-modules. Recall that the Virasoro Verma modules

Theorem 219.

V(h, c) is irreducible ⟺  Dn ≠ 0 for all n.
Dn = 0 ⟹  there exists a proper submodule N ⊂ V(h, c) such that N ∩ V(h, c)n ≠ 0.

1. Dn ∈ C[h, c], so it’s a polynomial in h and c.
2. We have an estimate for the degree of this polynomial: degDn ≤ dn, where

∑n dnt
n = ∂

∂u ∏
∞
n=1

1
1−utn

u=1
.∣3. Now imagine the Verma module by the standard “downwards cone” picture. Suppose

some Dn vanishes for some h, c. Then there is a submodule with nontrivial intersection
with the corresponding weight space V(h, c)n. Then any nonzero vector in this intersection
freely generates a module over U(V ir−). This proper submodule contains a space of the
same size as the Verma module, but starting at a point in the weight space n, rather than
at the top. So any factor arising at this top level of the submodule arises also in all of the
levels under it, with multiplicity P(1), then P(2), then P(3), and so on.∣



□

appeared as multiplicity spaces in the tensor product. We can compute their highest weights
and characters, and it appears that they satisfy this property.

Integrable ŝl2-modules L(ℓ, k)

Here, ℓ, k ∈ Z≥0, ℓ ≤ k, and ℓ denotes the highest weight while k denotes the level.
We have

We have formulas

We also have character formulas

The character formula comes from the Kac-Peterson product rule for Θ.
Now if we make a change of variables r = ℓ + 1, s = ℓ + 1 − 2m, then we get

The character formula implies that

where n = r ⋅ s.

L(ℓ, k) ⊗ L(0, 1) = ⨁
V ir↷

U(h, c)

d−graded multiplicity spaces

⊗ L(ℓ − 2m, k+ 1).



c = 1 −
6

(k+ 2)(k+ 3)
,

h = m2 +
ℓ(ℓ + 2)
4(k+ 2)

−
(ℓ − 2m)(ℓ − 2m+ 2)

4(k+ 3)
.

chU(h, c) =
f k,ℓ
m (q) − f k,ℓ

ℓ+1−m
(q)

φ(q)
,

f k,ℓ
m = ∑

j

q (k+2)(k+3)j2+((ℓ+1)+2m(k+2))j+m2
.

h =
((k+ 3)r− (k+ 2)s)2 − 1

4(k+ 2)(k+ 3)
,

= h
(k)
r,s =

1
48

((13 − c)(r2 + s2) + √(c− 1)(c− 25)(r2 − s2) − 24rs− 2 + 2c),

chU(h, c) =
qh

(k)
r,s

φ(q)
(1 − q rs − q (k+2−r)(k+3−s) + ∑ qhigher degree terms).

dimU(h, c)n < P(n),

Proposition 220.

If h = hr,s(c), then Dn = 0.



□

Proof.
We know that Dn is divisible by the right hand side, and Qr,s(h, r) have no common factors.

Recap of singular vectors

The determinants of the Shapovalov form control when singular vectors appear in the Verma
module. More precisely, for a Verma module M(λ), a singular vector appears in a given weight
space precisely when the corresponding Shapovalov determinant introduces a new factor which
vanishes for that value of λ.

For the classical finite-dimensional g and the affine Kac-Moody ĝ (and more generally, for any
Kac-Moody Lie algebras, not to be confused with affine Kac-Moody Lie algebras which are a
special type of Kac-Moody Lie algebras; the more general Kac-Moody Lie algebras are just Lie
algebras arising from certain Cartan matrices, and therefore encompass both affine Kac-Moody
Lie algebras and the finite-dimensional classical Lie algebras), the triangular weight
decomposition implies that the Shapovalov determinants always decompose into a product of
linear factors. As such, the vanishing of any of the Shapovalov determinants in M(λ)

corresponds to λ lying on a union of hyperplanes. In the finite-dimensional simple case, these
hyperplanes are precisely the affine root hyperplanes. For example, in the sl3 case, we have
the familiar picture:

So the condition that M(λ) has a singular vector precisely corresponds to λ lying on one of
these hyperplanes.

Now, when λ lies on the intersection of hyperplanes in the dominant chamber (i.e. it is a
dominant integral weight), then in fact it has two singular vectors generating two Verma
submodules. These are then enough to make the quotient finite-dimensional, giving us the
usual picture of irreducible finite-dimensional sl3-modules. The affine Kac-Moody case is
completely analogous.

Theorem 221.

Let hr,s(c) be the h(k)
r,s  as defined above. For r ≠ s let Qr,s(h, c) = (h− hr,s)(h− hs,r), a quadratic

polynomial in h, c. For r = s define Qr,r = h+ (r2−1)(c−1)
24 . Then

Dn = constant
≠0

⋅ ∏
1≤s≤r≤n

Q
P(n−rs)
r,s .

“32-Figure1.3-1.png” could not be found.

Remark 222.



For the Virasoro algebra, the picture is slightly more complicated. For V(h, c), we have
Shapovalov determinants which again give conditions for the singular vectors to arise.
However, these arise for h = hr,s, and depending on r, s these may give quadratic or linear
relations on h, c. As a result, the condition for V(h, c) to have submodules is equivalent to (h, c)
lying on some union of hyperbolas and lines.

Dec 6
Minimal Virasoro modules and classification problem for unitary
representations

We’ll discuss these two topics, in that order. (We’ll at least start on the classification problem for
unitary representations.)

Category-O Virasoro modules

Last time, we constructed category-O Virasoro modules which are “extremely small,” which
were quotients of the Verma module by the submodule generated by two independent vectors:

While the picture is quite simple, the details can be rather ugly. In particular, the singular vectors
corresponding to hyperplanes corresponding to simple roots (in the above picture, this would be the
blue and purple lines, and shifts of them) are significantly “simpler” than the singular vectors
corresponding to hyperplanes corresponding to positive, but not simple, roots. This is because
singular vectors corresponding to hyperplanes of simple roots are generated directly from the
highest weight vector by the corresponding monomial in the PBW basis. On the other hand,
singular vectors corresponding to hyperplanes of positive, but not simple, roots are instead linear
combinations of the monomial action on the highest weight vector inside the correct weight space.
It is not a direct “monomial” itself.

V(h, c)/ (V(h′, c) + V(h′′, c)).

Example 223.

The GKO construction:

c = 1 −
6

(k+ 2)(k+ 3)

h = hr,s =
((k+ 3)r− (k+ 2)s)2 − 1

4(k+ 2)(k+ 3)



The idea for constructing minimal Virasoro modules is to generalize the above example, by
making k+ 2

p‵

, k+ 3
p

 independent parameters.

We have pp′

(p−p′)2 = (k+ 2)(k+ 3). We get

neither of which change under scaling (p, p′) ↦ (λp,λp′).
Generalization: can assume p, p′ are any pair of coprime integers. Now let 1 ≤ r < p′,
1 ≤ s < p.

Observation:

This means that the Verma submodule generated by the singular vector of weight hr,s + rs also
has two different singular vectors; same for hr,2p−s = h2p′−r,s. This is aptly encoded below: the
Verma module associated to (r, s) has two submodules associated to (p′ + r, p− s) and
(r, 2p− s), and so on: one can iterate this procedure to get infinitely many submodules in the

for 1 ≤ r, s ≤ k+ 1.



hr,s =
(pr− p′s)2 − (p− p′)2

4pp′
,

s = 1 −
6(p− p′)2

pp′
,

Proposition 224.

For c and h = hr,s as above written in terms of p, p′, V(hr,s, c) has a singular vector:

1. of the weight hr,s + rs,
2. of the weight hr,s + (p′ − r)(p− s) (because hr,s = hp′−r,p−s).

hr,s + rs = hp′+r,p−s = hp′−r,p+s,
hr,s + (p′ − r)(p− s) = hr,2p−s = h2p′−r,s.



original Verma module.

This is actually quite a nontrivial statement - that the submodules form the lattice shown above!
For example, it could happen that there are multiple singular vectors of a specified weight. And
if there are multiple singular vectors of a given weight, then for example, the submodules
associated to two different weights which both share a submodule (themselves) of the same
weight, might not intersect anymore (for example, the submodules of highest weights
(p′ + r, p+ s) and (r, 2p− s) both have a submodule of highest weight (2p′ + r, s), but if there
were multiple singular vectors of weight (2p′ + r, s) then these two submodules might not even
intersect). However, it turns out that the picture is as above, and the proof doesn’t even use
much beyond the computation of the determinant of the Shapovalov form.

Theorem 225 (Feigin-Fuks).

If c,h are as above, then all submodules in V(h, c) are generated by singular vectors, and all Verma
submodules are described by the picture:



We’re not going to prove this, however. Let’s switch subjects now.

Unitary representations

All of the infinite-dimensional Lie algebras we have considered so far, namely a, ĝ,V ir, are
defined over R. Furthermore, the antiautomorphism Θ : U(L) → U(L)op is defined over R as
well. This means we can extend it to an antilinear automorphism defined over C. This means
we can define a Hermitian version of the Shapovalov form.

Proposition 226.

Such a ⟨, ⟩ exists on any Verma module with real highest weight.

Definition 227.

An L-module M  is called unitary if there exists a positive-definite contravariant Hermitian ⟨, ⟩.

Remark 228.



□

Proof.
Any submodule has an orthogonal complement.

On the Lie algebra itself, the ⟨, ⟩ is almost never positive-definite.

Proposition 229.

A unitary M  is semisimple.

□

Example 230.

Consider L(λ) (simple quotient module) for sl2 and λ ∈ R.

Proof.
Let vλ be the highest weight vector. Then L(λ) is spanned by vλ, fvλ, f 2vλ,…  We can compute
that ef kvλ = ck ⋅ f k−1vλ for ck = (λ− 2k) + ck−1 = kλ− k(k+ 1) which is negative for k ≫ 0

. Then we compute that ⟨f kvλ, f kvλ⟩ = ⟨vλ, ekf kvλ⟩ < 0 so long as none of the ck = 0 and
k ≫ 0, as the form ends up changing sign, eventually giving a negative.

We’ll do this next time.

Proposition 231.

L(λ) is unitary ⟺  λ ∈ Z≥0.

Corollary 232.

L(λ) for ŝl2 can be unitary only if λ is dominant integral.

Theorem 233.

In fact L(λ) for ŝln is unitary iff λ is dominant integral.

Example 234.



Dec 11
Unitarity for representations of ŝln and V ir

First, let’s consider L(λ̂), an irreducible highest weight ĝ-module.
Necessary condition: L(λ̂) is unitary ⟹  λ̂ is a dominant integral weight ⟺
⟨λ̂,α∨

i ⟩ ∈ Z≥0 for all simple roots αi.

□

The Fock space Fμ for a (recall that μ is the eigenvalue of a[0] ∈ a).

Proof.
The monomials ∏ a[−ri]ki ⋅ vμ are orthogonal. So for such a vector, the inner product with itself is
∏ r

ki
i > 0.

Proposition 235.

For μ ∈ R, Fμ is unitary.

Corollary 236.

We get unitary Virasoro modules:

for n ≠ 0, L0 = μ2+λ2

2 +∑m>0 a−mam, and Θ(Ln) = L−n.
The highest weight is c = 1 + 12λ2.

Ln =
1
2

∑
m

: anan+m : +iλnan ↷ Fμ:

:

Corollary 237.

The simple V ir-modules L(h, c) is unitary if c ≥ 1 and λ ≥ c− 1.

Proposition 238.

The converse is true: λ̂ is dominant integral weight ⟹  L(λ̂) is unitary.



Proof.
We will only prove this for ŝln, because there is a really nice construction, even though it holds
for all Kac-Moody algebras.
Let g = sln. First, it’s sufficient to show for fundamental representations, which for ŝln are just
L(0, 1) and L(ωi, 1). For an arbitrary dominant weight λ̂ =∑n−1

i=0 niω̂i for ni ∈ Z≥0 (where
ω̂0 = (0, 1) and ω̂i = (ωi, 1) for 1 ≤ i ≤ n− 1), we have an embedding L(λ̂) ↪⨂i L(ω̂i)⊗ni . In
particular, if we know that each of the L(ω̂i) are unitary, then the tensor product is as well, and
hence the restriction to L(λ̂) is also unitary.

Next, we use the “fermion” construction of L(∗, 1). Namely, consider the infinite-dimensional
vector space Cn[z, z−1], which carries an action by sln[z, z−1] ⊂ glJ∞, the generalized Jacobi
matrices, which in turn also act on Cn[z, z−1]. For this action, we need some ordering of a basis
on Cn[z, z−1], by taking some basis v1,… , vn of Cn and then taking the ordered basis
…, z−1vn, v1,… , vn, zv1,… , zvn, z2v1,…. Now this representation of the loop algebra will give
a representation of its central extension ŝln on the semi-infinite wedge space.

As a result, we get an action ŝln ↷ Λ
∞
2 +∙(Cn[z, z−1]). We can regard this space as an

irreducible representation of the Clifford algebra Cℓ(ψj
i ,ψ

j∗
i ) for j = 1, 2,… ,n and i ∈ Z. It is

generated by the vector

where ψj
i  acts by ψj

i ∧ − and ψj∗
i  acts by ∂ψj

−i
. This construction is analogous to the construction

at the beginning of the course, and the action of ŝln here is analogous to the action of the
Heisenberg algebra.

We can compute the level. h1[m] acts as : ∑r+s=m ψ1
rψ

1∗
s − ψ2

rψ
2∗
s : . Then we can compute that

Proof.

n

⋀
j=1

∞

⋀
i=0

ψ
j
i ,

[h1[m],h1[−m]] = 2m ⋅ id,

= ⟨h1,h1⟩ ⋅m ⋅ k,
⟹ k = 1.



Proposition 239.

1. Λ ∞
2 +∙(Cn[z, z−1]) is integrable.

2. There exists a nontrivial homomorphism L(ω̂i) → Λ
∞
2 +∙(Cn[z, z−1]).

3. Λ
∞
2 +∙(Cn[z, z−1]) is unitary.



Consequences for V ir

We had a computation on small Virasoro module:

where L(hrs, c) arises in the following way. We take the tensor product L(0, 1) ⊗ L(λ, k) of ŝl2-
representations, and this decomposes with respect to the diagonal ŝl2-action as

where the L(hr,s, c) are called the discrete series Virasoro modules. Once we know that L(0, 1)
and L(λ, k) are unitary representations of ŝl2, then we know that the multiplicity spaces
L(hr,s, c) are unitary V ir-modules. The reason for this is as follows. We have

1. We have to show that ei, fi for i = 0,… ,n− 1 act locally nilpotently. In fact, we can show
this for any eij[m] for i ≠ j, for any Fourier component of any non-Cartan part. The
element eij[m] acts as :∑r+s=m ψi

rψ
j∗
s : . We can represent any monomial by n horizontal

number lines, and on each number line we have some markings on the integers which are
bounded below and hit every sufficiently large integer. Now the ψi

rψ
j∗
s  takes s in the jth

line, shifts it by m = r+ s, then puts it in the ith line (in that spot), if possible (i.e. if it’s
already empty). Since you can only do this finitely many times, the eij[m] act locally
nilpotently. So as a representation of ŝln, it is integrable.

2. The highest vectors are again given by monomials. In the picture from before, we fill
everything to the right of the 0 line, and put exactly i markings on the zero line starting
from the top. This will be a highest vector; it will be annihilated by all positive Chevalley
generators, and the highest weight will be ω̂i. We get a map from the Verma module M(ω̂i)

, which must fact through L(ω̂i) since part 1 says that the target is integrable.

□

□

3. Λ ∞
2 +∙(Cn[z, z−1]) is a unitary Cℓ-module, with the monomial basis being the orthonormal

one: we have that the dual of ψj
i  is ψj∗

−i, which implies that eij[m]∗ = eji[−m], which is what
we needed.

This proves everything: we have embeddings L(ω̂i) ↪ Λ
∞
2 +∙(Cn[z, z−1]), which are

unitary, hence the L(ω̂i) are unitary, hence any L(λ̂) is unitary for dominant integral λ̂.

Corollary 240.

L(λ̂) is unitary ⟺  λ̂ is a dominant weight.

L(hrs, c), c = 1 −
6

(k+ 2)(k+ 3)
, k ∈ Z≥0,

L(0, 1) ⊗ L(λ, k) = ⨁ L(hr,s, c)

V ir−module, discrete series, Unitary

⊗ L(r, k+ 1),



where

We then conclude that the adjoint of Ln is L−n by computing the adjoints of each term in the
sum and reversing the order; this implies that all of the L(hr,s, c) are unitary Virasoro modules.

Now let’s summarize what we already know about unitarity for Virasoro modules. The answer
here is much more complicated than in the case for Kac-Moody algebras, where unitarity is
basically the same as integrability.

L(h, c) for h ≥ 0, c ≥ 1 is unitary. This comes from the Kac formula for determinant of the
Shapovalov form. What we want is to determine if this is always ≥ 0 or not.

Although these formulas are rather long, at least they can be computed. This is already
maximally simplified.

One can observe that in the region h ≥ 0 and c ≥ 1, then φr,s(h, c) ≥ 0, and it is almost all
linear. We’re out of time, but next time (last class) we’ll explain: if c < 0 or h < 0, then L(h, c)
can’t be unitary (for sl2 the reason for this is just a computation); and also we will see the most
interesting case, which is for h ≥ 0 and 0 ≤ c < 1. It will turn out that in the region 0 ≤ c < 1, the
only unitary representations are L(hr,s, c) as described under Consequences for V ir, and in fact
we see that the central charge is always between 0 and 1. It turns out that this is a complete
answer on the unitarity problem for Virasoro. But this is very difficult, so we won’t see a
complete proof, but at least we will see some of the ideas.

Dec 13
This is the last class.

Unitarity of V ir modules
By now, we have some known cases where the irreducible Virasoro module is unitary.

Ln = Ln

Sugawara

⊗ 1 + 1 ⊗ Ln

Sugawara

−Δ( Ln

Sugawara

),  

SugawaraLn = : ∑
r+s=n

xa[r]xa[s] :.

Dn =C ⋅ ∏
rs≤n

φ
P(n−rs)
r,s (h, c),

φr,s(h, c) =(h−
(r− s)2

4
)

2

+
h

24
(r2 + s2 − 2)(c− 1) +

1
576

(r2 − 1)(s2 − 1)(c− 1)2

+
1
48

(c− 1)(r− s)2(rs+ 1),

φr,r(h, c) =h+
(r2 − 1)(c− 1)

24
.



Proof.

Let’s first examine the situation when h > 0. Then in the region c ≥ 1 and h > 0, the Hermitian
form ⟨, ⟩ on the nth weight space of the Verma module V(h, c) has constant signature, because
the determinant is always positive (and the signature can only change when the Hermitian form

1. from boson realization of V ir. For n ≠ 0 write

acting on the Fock space, where an are generators of the Heisenberg algebra a are such
that the highest vector vμ ∈ Fμ is annihilated by all a>0 and a0vμ = μ ⋅ vμ, and also
[an, a−n] = n.
Then Fμ is a unitary representation of the Heisenberg algebra a once μ ∈ R. Moreover, the
Ln according to the formula above generate the Virasoro action V ir ↷ Fμ, and since we
have the factor of i, we even have the adjoint of Ln is L−n, i.e. L⊺

n = L−n. So Fμ is a
unitary representation of V ir. We can compute that the central charge is c = 1 + 12λ2 and
the highest weight is h = μ2

2 + λ2

2 . This implies that L(h, c) is a unitary V ir-module. This
construction gives (h, c) where c > 1 and h ≥ c−1

24 .

Ln =
1
2
: ∑
m∈Z

a−man+m: +iλnan ↷ Fμ,:

2. From GKO construction. We have V ir-modules L(hr,s, c); if c = 1 − 6
(k+2)(k+3)  for k ∈ Z≥0,

so that 0 < c < 1, then this is unitary. Recall that c is the central charge (eigenvalue of
central element) and h is the eigenvalue of L0 on the highest weight vector.

Theorem 241.
1. L(h, c) is always unitary for c ≥ 1, h ≥ 0.
2. L(h, c) cannot be unitary for c < 0 or h < 0.

This leaves only the case 0 ≤ c < 1 and h ≥ 0, which is quite difficult.

1. The Kac formula for the Shapovalov determinant is as follows.

Recall that Dn is only defined up to a constant, but upon further reflection the constant
scalar is a positive integer. We have Dn > 0 for c ≥ 1 and h ≥ 0, unless c− 1 = 0 = h.

Dn = C

positive integer

∏ φ
P(n−rs)
r,s ,

φr,r =h+
(r2 − 1)(c− 1)

24
,

φr,s =(h−
(r− s)2

4
)

2

+
h

24
(r2 + s2 − 2)(c− 1)

+
(r2 − 1)(s2 − 1)(c− 1)2

576
+

(c− 1)(r− s)2(rs+ 1)
48

.


r≥s,
rs≤n



becomes non-degenerate, i.e. when the determinant becomes 0). This implies that to show
L(h, c) is unitary, it’s sufficient to give at least one pair (h, c) in the region h ≥ 0 and c ≥ 1 where
⟨, ⟩ is positive definite on V(h, c)n. This can be seen to be true if h > c−1

24 , the bosonic example
give above. This means that for h > 0, the form is non-degenerate on the Verma module, so
V(h, c) = L(h, c) irreducible and it is unitary. We still have to address the case h = 0. But in this
case, the only existing contravariant Hermitian form is positive semidefinite. Moreover,
L(h, c) = V(h, c)/Rad⟨, ⟩, so the form is positive definite on the quotient, and hence L(h, c) is
indeed unitary (although now it is a quotient of V(h, c), and no longer equal to the entire Verma
module).

This is very hard, so we won’t actually prove it. Instead we’ll discuss some ideas that go into the
proof.

□

2. Take a highest weight vector v ∈ L(h, c) such that L>0v = 0, L0v = hv, and ⟨v, v⟩ = 1. Then
we compute:

If c < 0 then picking n ≫ 0 we get a negative value, hence L(h, c) is not unitary. If h < 0

then picking n = 1 we get a negative value, so L(h, c) is not unitary.

⟨L−nv,L−nv⟩ = ⟨v,LnL−nv⟩,
= ⟨v, [Ln,L−n]v⟩,

= (2nh+
n3 − n

12
c).

Theorem 242.
For 0 ≤ c < 1 and h ≥ 0, the only unitary L(h, c) are L(hr,s, c) where c = 1 − 6

(k+2)(k+3)

and hr,s is of the particular form in terms of r, s.

Remark 243.

Recall that the formula for c comes from the GKO construction. In the ŝl2-modules L(0, 1) and
L(λ, k), we can take the tensor and get L(0, 1) ⊗ L(λ, k) = L(hr,s, c) ⊗ L(μ, k+ 1). If we try to
use larger Lie algebras or higher weights, the multiplicity spaces (here, they’re the V ir-modules
L(hr,s, c)) are much larger, and may not even finitely-generated.

Definition 244 (ghost number).

Define the “ghost number” gn(h, c) to be the number of −1s in the Jordan normal form of
⟨, ⟩

L(h,c)n
.∣



□

□

Proof.
Consider sl2 = Span{ L1

E

, −2L0

H

, −L−1

F

}. The anti-involution exchanges E ↔ −F  and H ↔ H.

Decompose L(h, c) =⨁M(−2(h+ n)) with respect to the sl2-action. The weights satisfy
− 2(h+ n) < 0. On such M(λ) with λ < 0, then ⟨, ⟩ is definite. This follows by computing the
scalar product of ⟨F kvλ,F kvλ⟩ = k!(−λ)(λ+ 1)(−λ+ 2)⋯(λ+ k− 1)⟨vλ, vλ⟩.

From this, we can deduce a weaker statement:

Proof.
The idea is to use Lemma 231 and proceed by induction: U (n) = ⋃2≤j≤n Uj ∋ (h, c), then
⟨, ⟩

L(h,c)n
 is indefinite. This comes from analyzing the factors in the Shapovalov determinant.

Namely, we need to show that φr,s(c,h) > 0 on U (n) ∖ U (n+1) for r, s > 1. For this, we need only
examine the intersection of Un with the boundary of Un−1, so we can reduce to the set
Un ∩ {φn−1,1 = 0}. On Un ∩ Un−1 ∖ U (n−2), we know that Dn > 0. On the other hand, the form is
indefinite. This means that we have a decomposition into a direct sum of a positive definite part
and a negative (semi)definite part, and in particular, the negative part has dimension at least 2.
On the boundary, the rank of the Hermitian form drops by one, because the multiplicity of the
zero is one, according to the Kac formula for the Shapovalov determinant. This means that on
the boundary we have the radical of the form, and once we quotient V(h, c) by the radical
Rad⟨, ⟩, then we still have an indefinite form, and hence the quotient L(h, c) is not unitary.

The full proof is more difficult, but this gives some of the ideas going into the proof.

That’s the end of the course! ■

Lemma 245.

gn(h, c) ≤ gn+1(h, c).



Proposition 246.

Let Uj = {(h, c) ∣ 0 < c < 1, h ≥ 0, φj,1(h, c) < 0}. Then for any (h, c) ∈ ⋃j≥2 Uj, we have
L(h, c) is not unitary.∣


