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1 “Lie groups” over p-adic fields

The study of groups arose from studying symmetries of objects. These symmetries were originally defined to be
either a subset of Sn, the symmetric group, or a subset of GL(V ), the invertible linear operators on some vector
space. In general, these corresponded with the mathematicians’ interest in studying either finite groups or infinite
groups. In our case, we are particularly interested in certain infinite groups which turned out to be historically
important in a number of ways: these are the Lie groups, which often encompass the infinitely many symmetries
of various objects such as spheres, circles, 3-D space, etc. Some examples of these are GLn(R), GLn(C), SLn(R),
SLn(C), SO(3), and SU(2). However, in this paper we will focus on analogs of some of these groups which are
defined over more exotic fields, namely nonarchimedean local fields.

First, we will give an overview of Lie groups and describe the construction of Chevalley groups to obtain their
analogues over finite extensions of Qp. We then define the Bruhat-Tits apartment of a Chevalley group, which is a
structure that interacts with the Chevalley group and its Lie algebra. We will ultimately utilize the topology of
nonarchimedean local fields and the apartment to construct the Moy-Prasad filtrations, which have direct applications
to studying representations of G.

1.1 Lie groups

The classical Lie groups such as GLn, SLn, SOn, and so on are well-studied. These groups often arise as groups of
specific types of matrices: GLn is the group of invertible matrices, SLn is the group of matrices with determinant 1,
and SOn is the group of orthogonal matrices with determinant 1. In this section, we review some crucial notions of
Lie groups, but it is only meant to be an overview: for a proper treatment, see [KJ08].

Definition 1. [KJ08, Def. 2.1] A real Lie group is a manifold G such that G is endowed with a group structure,
such that multiplication and inversion are smooth maps.

Similarly, we have an analogous definition of complex Lie groups.

Definition 2. [KJ08, Def. 2.3] A complex Lie group is a complex analytic manifold G such that G is endowed
with a group structure, such that multiplication and inversion are analytic maps.

In essence, real and complex Lie groups are groups which are able to be identified with (real or complex
analytic) manifolds such as S1. Many of the most well-known examples are the classical Lie groups, such as
GLn(R), GLn(C), SLn(R), SLn(C), SOn(R), SOn(C), Sp2n(R), Sp2n(C), and so on. We will be most interested in
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complex semisimple Lie groups: those which have no nontrivial connected abelian normal subgroups, such as SLn(C),
SOn(C), and Sp2n(C).

Definition 3. To a Lie group G, its Lie algebra g is defined to be the tangent space to G at the identity, endowed
with a Lie bracket [, ] : g× g→ g which is bilinear, antisymmetric, and satisfies the Jacobi identity

[x, [y, z]] = [[x, y], z] + [y, [x, z]].

When G is a real Lie group, the Lie algebra will be a real vector space; when G is a complex Lie group, the Lie
algebra will be a complex vector space. To see how to compute the Lie algebra of various Lie groups in more detail,
see [KJ08]. In fact, the Lie bracket is the tangent space map TeG→ TeG induced by conjugation; see [KJ08] for
more details. However, in this paper, we will not be too concerned about how the Lie bracket arises, because for all
matrix subgroups (such as the classical Lie groups mentioned above), the Lie bracket is given by

[x, y] = xy − yx.

Definition 4. The Killing formK(−,−) on g is defined to be the bilinear form on g given byK(x, y) = tr(adx ad y),
where adx : g→ g is the operator (adx)(y) = [x, y].

Definition 5. An element x ∈ g is semisimple if adx : g→ g is semisimple (i.e., diagonalizable).

Example 6. Let GLn(F ) be the general linear group on F = R or C. Then the Lie algebra GLn(F ) is

gln(F ) = Matn×n(F ),

the n× n matrices. The Lie bracket is given by [X,Y ] = XY − Y X for X,Y two n× n matrices with entries in F .
The semisimple elements are precisely the diagonal matrices in gln(F ).

Example 7. Let SLn(F ) be the special linear group on F = R or C. The Lie algebra of SLn(F ) is

sln(F ) = {X | X ∈ Matn×n(F ), trX = 0},

the traceless n× n matrices. The Lie bracket is again given by [X,Y ] = XY − Y X. The semisimple elements are
precisely the diagonal matrices in sln(F ).

For ease of discussion, when we say Lie group, we mean one of the classical Lie groups, which are in particular
matrix subgroups. From the Lie group, one can obtain its Lie algebra. The reverse is partially true. The Lie group
and its Lie algebra are deeply intertwined via the following fact:

Proposition 8 ([KJ08], Cor. 3.43). If a Lie group G is simply connected with Lie algebra g, then G = 〈{exp(X) |
X ∈ g}〉. Any other connected Lie group G′ with Lie algebra g is of the form G/Z for some discrete normal subgroup
Z ⊂ G. (Note that the exponential map converges and is therefore well-defined.)

In fact, the exp map gives a local homeomorphism between neighborhoods of 0 ∈ g and 1 ∈ G; additionally, if G
is connected, any open neighborhood of 1 ∈ G generates all of G. In particular, taking the open neighborhood which
is homeomorphic to an open neighborhood of 0 ∈ g shows that every element of G can be written as a product of
exp(X) for X ∈ g (even better, for X in a specific open neighborhood of 0 ∈ g). Furthermore, for a Lie group G

with Lie algebra g, we have a bijection between Lie subgroups of G and Lie subalgebras of g. For H ⊂ G a Lie
subgroup, the corresponding Lie subalgebra of g is simply h = T1(H) ⊂ g, the Lie algebra of H. How exactly does
one recover the Lie subgroup from the Lie subalgebra? The answer: For a Lie subalgebra h ⊂ g, we can obtain the
corresponding Lie subgroup by taking the subgroup generated by the exponentials of all X ∈ h, intersected with G.
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Notation 1. We will call the above process the exp ↔ d/dt dictionary, to move between Lie subgroups of G and
Lie subalgebras of g.

Remark 9. The d/dt part comes from the fact that in classical Lie groups, the way to obtain elements in the Lie
algebra is from differentiating curves in the Lie group. This follows from a more general process in manifolds: see
[Lee13] for more details.

We will primarily be interested in complex semisimple simply connected Lie groups. The complex part just
means that we are interested in complex Lie groups, as in Definition 2. We define the notions now.

Definition 10. A Lie algebra g is simple if it is nonzero and has no nonzero subspaces I such that [I, g] = {[i, x] |
i ∈ I, x ∈ g} = I (these are called ideals). A Lie algebra g is semisimple if it is a direct sum of simple Lie algebras.
A Lie group is semisimple if its Lie algebra is semisimple.

Proposition 11 (Cartan’s criterion). A Lie algebra g is semisimple iff the Killing form is nondegenerate.

Example 12. The Lie groups SLn(C), SOn(C), and Sp2n(C) are all simple, and therefore semisimple. The Lie
group GLn(C) is not semisimple.

When G is a complex semisimple Lie group, then g has several important properties. By Cartan’s criterion, the
Killing form (, ) is a nondegenerate bilinear form. As a result, it induces an isomorphism g ' g∗, its dual space.

Definition 13. A toral subalgebra h of g is a commutative (i.e., the Lie bracket is 0 when restricted to h) subalgebra
consisting of only semisimple elements. A Cartan subalgebra is a toral subalgebra h such that h = {x | [x, h] = 0}.

Cartan subalgebras turn out to arise as maximal toral subalgebras, and therefore always exist. They are also
commonly called a maximal torus of g, and their corresponding Lie subgroup are commonly called a maximal
torus of G. For this reason, Cartan subalgebras are sometimes denoted t, with the corresponding maximal torus in
G denoted by T . The reasoning for this name is that in complex semisimple Lie groups (or more generally, split
reductive groups), the maximal torus T ⊂ G splits as a direct product of copies of C×. In particular, this means
that T ∼= Gnm for some integer n, which implies that T is isomorphic to a torus, which is just defined to be a direct
product of copies of Gm. The condition for the Cartan subalgebra implies that T is maximal, hence the name
maximal torus.

Example 14. In gln(C) and sln(C), a Cartan subalgebra is given by the diagonal matrices inside each Lie algebra.
Their corresponding maximal tori in GLn(C) and SLn(C) are, once again, the diagonal matrices inside each Lie
group. Notice that the maximal torus in GLn(C) turns out to be (C×)n, as each diagonal entry acts independently
of each other. On the other hand, the maximal torus in SLn(C) turns out to be (C×)n−1, as the last entry is
determined by the previous n− 1, which are freely chosen and act independently of each other.

Crucially, we have the following important decomposition.

Theorem 15. For g a complex semisimple Lie algebra with a fixed Cartan subalgebra h, we have that

g = h⊕
⊕

α∈h∗\{0}

gα,

where gα = {x | [h, x] = α(h)x}. Setting Φ := {α | gα 6= 0}, we call Φ the root system of g. We have that Φ is
finite and each gα is one-dimensional. Furthermore, for each α, β ∈ Φ, we have [gα, gβ ] ⊂ gα+β.
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Letting (, ) be the Killing form on a complex semisimple Lie algebra g, then the restriction of (, ) to a Cartan
subalgebra h is again semisimple. As a result, it again induces an isomorphism h ' h∗. Using this isomorphism, we
obtain a nondegenerate bilinear form (, ) on h∗ as well, and in particular, we can apply it to Φ ⊂ h∗. We will freely
use this same notation (, ) to mean both the nondegenerate bilinear form on h and h∗.

Proposition 16. For any α, β ∈ Φ, we have that (α, β) ∈ Z.

It turns out that (abstract) root systems have a very orderly description. Let Φ be a root system. Then there
exists a polarization of Φ, which is a splitting Φ = Φ+ t Φ− into the positive roots and negative roots - which are
in fact negatives of each other in h∗. Furthermore, after choosing a polarization (there are several choices), there
exists a base ∆ ⊂ Φ+ which is unique to each polarization such that each element of Φ+ can be written uniquely
as a Z≥0-linear combination of elements of ∆, while each element of Φ− can be written uniquely as a Z≤0-linear
combination of elements of ∆. Furthermore, ∆ forms a basis for h∗, which follows from the fact that [gα, gβ ] ⊂ gα+β .

Example 17. Let us consider g = sln(C), which we can identify as the algebra of n× n traceless matrices. Then
the maximal torus t consists of the diagonal matrices. Let ei denote the linear functional on t which takes the ith
element on the diagonal. Then the roots are precisely ei − ej for i 6= j. The choice of positive roots can be made
to be {ei − ej | i < j}, while the negative roots can be chosen to be {ei − ej | i > j}. A base can be chose to be
∆ = {ei − ei+1 | 1 ≤ i ≤ n − 1}. Finally, let us consider what each gα is for α = ei − ej . This is precisely the
one-dimensional subspace consisting of matrices X such that Xab = 0 for all (a, b) 6= (i, j).

Example 18. Specializing Example 17 to n = 2, we have the decomposition

sl2(C) ∼= C
(

1 0
0 −1

)
⊕ C

(
0 1
0 0

)
⊕ C

(
0 0
1 0

)
.

Abstractly, we have chosen

e =
(

0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
,

such that
[e, f ] = h, [h, e] = 2e, [h, f ] = −2f.

Note that with an arbitrary complex semisimple Lie algebra g, for any α, we have that gα and g−α are each one
dimensional. If we choose e ∈ gα and f ∈ g−α such that (e, f) = 2/(α, α), then defining hα := α∨ = 2Hα

(α,α) , we have
that (e, f, hα) satisfy the relations

[e, f ] = hα, [hα, e] = 2e, [hα, f ] = −2f.

As a result, the subalgebra of g generated by e, f, hα forms a 3-dimensional Lie subalgebra isomorphic to sl2(C). We
call this an sl2-triple, and denote it by sl2(C)α ⊂ g.

Definition 19. Let E be the ambient R-vector space defined by the R-span of ∆. Then to each α ∈ Φ, we define
its coroot α∨ ∈ E∗ by 〈α∨, λ〉 = 2(α,λ)

(α,α) . Explicitly, we have α∨ = 2Hα
(α,α) where Hα ∈ h corresponds to α ∈ h∗ under

the isomorphism given by the Killing form. The set of coroots is denoted Φ∨.

Definition 20. We now have the root lattice, the lattice in E generated by α ∈ Φ. We also have the coroot
lattice, the lattice in E∗ generated by α∨ ∈ Φ∨. Note: the coroot lattice is not the dual lattice of the root lattice.
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Definition 21. A Lie group G is split if the maximal torus T ⊂ G is isomorphic to (C×).

Since C is algebraically closed, every complex semisimple Lie group is automatically split; furthermore, since
semisimple Lie groups are reductive, every complex semisimple Lie group is split reductive as well.

Definition 22. The character lattice X∗(G) is defined to be Hom(T,C×). When G is split reductive, then this
is equivalent to Hom((C×)n,C×) = Zn.

Definition 23. The cocharacter lattice X∗(G) is defined to be Hom(C×, T ). When G is split reductive, then
this is equivalent to Hom(C×, (C×)n) = Zn.

Example 24. Let G = SLn(C). Then the maximal torus is
{(

a 0
0 a−1

)
| a ∈ C×

}
∼= C×. It follows that the

character lattice X∗(SLn) ∼= Z, where n corresponds to the element
(
a 0
0 a−1

)
7→ an. The cocharacter lattice

X∗(SLn) ∼= Z, where n corresponds to the element a 7→
(
an 0
0 a−n

)
.

1.2 Our fields of interest

Unlike Lie groups, which are defined over R or C, the groups we will be studying are defined over non-archimedean
local fields. The formal definition is given below, c.f. [All, Def. 0.1]:

Definition 25. A local field is a field which is locally compact and nondiscrete (there are subsets which are not
open).

We will not be too concerned with the precise definition, because there is a complete classification of local fields.

Theorem 26. [All, Thm. 0.6] Every local field is isomorphic (as topological fields) to one of the following: R, C, a
finite extension of Qp for some p, or a finite extension of Fp((T )) for some p.

The two more commonly used fields R and C are known as archimedean fields, while the finite extensions of Qp
and Fp((T )) are nonarchimedean fields. The definition of nonarchimedean fields was given in the first presentation,
by the author and M. Haiman.

In this paper, we are primarily focused on characteristic zero non-archimedean local fields, namely finite extensions
of Qp.

Notation 2. From now on, K will always denote a finite extension of Qp for some prime p.

In the case of K = Qp, we saw that Qp is complete with respect to the p-adic norm | · |p, x 7→ p−vp(x), where
vp(·) is the p-adic valuation. Taking all elements where |x|p ≤ 1, we have the local ring Zp which is compact in Qp,
and Qp = Frac(Zp). Furthermore, Zp has maximal ideal pZp, and has residue field Zp/pZp ∼= Z/pZ ∼= Fp, with p

a uniformizer. We can then lift the residue classes of Zp/pZp to a set of elements A ⊂ Zp (most commonly the
elements {0, 1, 2, . . . , p− 1}) such that every element of Zp can be written as

∑∞
i=0 aip

i for ai ∈ A; it follows that
every element of Qp can then be written as

∑
i≥N aip

i for ai ∈ A and some integer N .
These results all carry over to finite extensions of Qp, namely K. An equivalent definition of local fields

requires that K be complete with respect to a discrete valuation v, and hence we may take the (compact)
local ring R := {x ∈ K | v(x) ≥ 0} with the property that K = Frac(R). This local ring has maximal ideal
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℘ := {x ∈ R | v(x) > 0} (note that this automatically includes zero) which is generated by a uniformizer, which we
fix to be $, such that $iR = ℘i. The residue field R/℘ is a finite extension of Fp, hence is a finite field Fq. Now we
may again lift the elements of R/m to a set A ⊂ R such that every element in K can be written as

∑
i≥N ai$

i for
ai ∈ A and N some integer. The topology is the profinite topology c.f. [RZ00], which agrees with the topology on
Qp as mentioned in presentations from [Gou97] when K = Qp.

In general, one can assume K = Qp for the remainder of this paper, for ease of understanding. Since Qp is the
easiest to describe explicitly, in examples we will often take K = Qp, R = Zp, and $ = p. However, all results carry
over immediately to any finite extension of Qp (and most even carry over to any nonarchimedean local field, but we
will not discuss that in this paper), by replacing Zp with R and p with $.

1.3 Chevalley groups

What we really want are analogues of Lie groups defined over K. The complex semisimple Lie groups are defined
over C, but often, as in the case of SLn(C), there is a fairly obvious way to define SLn(k) over any field k: the
group of matrices with entries in k with determinant 1. In [Che55] and later extended in [SFW67], the analogous
groups to complex semisimple Lie groups are defined over any field k; in our case, we are primarily concerned with
k = K, a finite extension of Qp. These groups are called Chevalley groups. We will describe the construction below
for simply-connected, complex semisimple Lie group.

Let G̃ be a simply connected, complex semisimple Lie group. Let g̃ = h̃⊕
⊕

γ∈Φ g̃γ be its Lie algebra, with h̃ its
Cartan subalgebra. Let Φ denote its set of roots, and let ∆ be a base (a choice of simple roots). Recall Example 18
for the definition of an sl2-triple.

Theorem 27 (Chevalley). For each γ ∈ Φ, there exists Xγ ∈ g̃γ and Hγ ∈ h̃ such that (Xγ , X−γ , Hγ) is an sl2-triple
for each γ and [Hγ , Xδ] = 2(δ, γ)/(γ, γ) ·Xδ for each γ, δ ∈ Φ.

It follows that {Xγ | γ ∈ Φ} ∪ {Hδ | δ ∈ ∆} is a basis for g̃.
We now define the corresponding Chevalley group G and its Lie algebra g.

Definition 28. To G̃, we define the Chevalley group

G := 〈{exp(tXγ) | t ∈ K, γ ∈ Φ}〉.

We define its Lie algebra to be
g :=

⊕
δ∈∆

KHδ ⊕
⊕
γ∈Φ

KXγ .

Remark 29. The exponential of a matrix is not always well-behaved over fields such as Qp. However, this can
be rectified as in [Rab03] by fixing a certain faithful finite-dimensional representation Ṽ of G̃, and then taking a
full-rank sublattice invariant under all Xn

γ /n! and taking the sublattice tensored with K to find a K-vector space.
We then view each Xγ as operators on this K-vector space, and by finite-dimensionality, there are a finite set of
weights, and hence Xγ is nilpotent as an operator. Thus exp(tXγ) makes sense in this view.

Example 30. Let G̃ = SL2(C). Its Lie algebra is given by sl2(C) =
{(

a b
c d

)
| a+ d = 0

}
, the traceless 2 × 2

matrices. Its Cartan subalgebra consists of
(
a 0
0 −a

)
for a ∈ C. Let λ1, λ2 be the linear functionals on the diagonal

matrices, such that λ1 picks out the first element on the diagonal, and λ2 picks out the second element on the
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diagonal. The root lattice of SL2(C) is therefore the sublattice of Zλ1 ⊕ Zλ2 consisting of Z(λ1 − λ2). There are
exactly two roots: λ1 − λ2, and λ2 − λ1.

Let us now construct the Chevalley group SL2(Qp). Choose ∆ = {λ1 − λ2}. The subalgebra corresponding to

λ1 − λ2 is C
(

0 1
0 0

)
, and the subspace corresponding to λ2 − λ1 is C

(
0 0
1 0

)
. Unsurprisingly (see Example 18), it

turns out that setting Xλ1−λ2 =
(

0 1
0 0

)
, Xλ2−λ1 =

(
0 0
1 0

)
, and Hλ1−λ2 =

(
1 0
0 −1

)
gives us an sl2-triple. Let

K = Qp, so that we are looking to define SL2 over Qp. Following Definition 28, we find that

g =
{(

a b
c −a

)
| a, b, c ∈ Qp

}
,

taking the Qp-linear span of the elements in the Chevalley basis, and we have now constructed our Lie algebra over
Qp. We also have

G =
{(

a b
c d

)
| ad− bc = 1, a, b, c, d ∈ Qp

}
,

following Definition 28, by exponentiating each tXγ . This is exactly what we expect from defining the analogue of
SL2(C) over Qp: the 2× 2 matrices with entry in Qp, whose determinant is 1.

One of the most crucial tools for us in this paper will be the exp ↔ d/dt dictionary. However, unlike in the
complex case, the exponential map does not converge everywhere. In fact, it has a relatively small radius of
convergence. Now, when we have an R-module g′ ⊂ g(K) (note that this is not a Lie subalgebra), we cannot
simply exponentiate everything in g′ to obtain the corresponding subgroup. However, when g′ can be written as
h′ ⊕

⊕
α∈Φ g′α for h′ ⊂ h and g′α ⊂ gα all R-submodules, then we can exponentiate each submodule individually

(since Xα is nilpotent for each α) and take the subgroup of G generated by these.

Example 31. Let G = SL2(Qp) and g = sl2(Qp). Then consider the Zp-submodule of g given by sl2(Zp) - in other
words, traceless 2× 2 matrices with entries in Zp. Since the root decomposition of g (as in Theorem 15) is

sl2(Qp) = Qp
(

1 0
0 −1

)
⊕Qp

(
0 1
0 0

)
⊕Qp

(
0 0
1 0

)
,

we note that we can choose a Zp-module in each summand:

sl2(Zp) = Zp
(

1 0
0 −1

)
⊕ Zp

(
0 1
0 0

)
⊕ Zp

(
0 0
1 0

)
,

which is closed under [, ] and Zp-action. It follows that the corresponding subgroup of SL2(Qp) is given by
exponentiating each individual term and taking the subgroup generated. In other words, we want〈{

exp
(
t 0
0 −t

)
, exp

(
0 t
0 0

)
, exp

(
0 0
t 0

)
| t ∈ Zp

}〉
=
〈{(

exp(t) 0
0 1/ exp(t)

)
,

(
1 t
0 1

)
,

(
1 0
t 1

)
| t ∈ Zp

}〉
,

=
〈{(

exp(t) 0
0 1/ exp(t)

)
,

(
1 t
0 1

)
,

(
1 0
t 1

)
| t ∈ Zp

}〉
,

=
{(

a b
c d

)
| a, b, c, d ∈ Zp, ad− bc = 1

}
,

= SL2(Zp).

Notably missing from the list of groups which we would like to work with is GLn(K), the general linear group.
This is a rather serious problem, since GLn is one of the most fundamental groups in all of mathematics. In fact,
almost all of the results of §1.1 and §1.3 carry over to somewhat more general Lie groups called reductive Lie groups,
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and indeed this does include GLn. We refer the reader to [Mil14] for a treatment on algebraic groups, and only
point out the differences for reductive Lie groups such as GLn.

One minor difference is that with reductive algebraic groups, we obtain a Lie algebra decomposition z ⊕ gss,
where z is abelian and gss is semisimple. Therefore, in constructing the Chevalley basis, we must extend a Chevalley
basis of gss to include elements of z.

Remark 32. The construction generally agrees with our intuition: in most cases, when a (reductive, linear algebraic
group) matrix group defined over C is defined by polynomial equations with integer coefficients, it essentially
carries over to any field K verbatim. For example, GLn over C is defined by n× n matrices (Aij) over C such that
det(A) 6= 0 (which is a polynomial in the entries). The corresponding GLn(K) is precisely the same definition: n×n
matrices over K such that the determinant is not zero. In the case of GLn, we construct the linear algebraic group
SpecQ [x11, . . . , xnn]det where det =

∑
σ∈Sn

∏n
i=1 xiσ(i) is the determinant. We find that the C-points are exactly

GLn(C), while the Qp points are precisely GLn(Qp).

Example 33. Recall Example 24. Note that GLn(C) is split reductive, but not semisimple. However, using the
technology of algebraic groups, we can compute its character and cocharacter lattices. Let G = GLn(C). Then the

maximal torus is
{(

a 0
0 b

)
| a, b ∈ C×

}
∼= (C×)2. It follows that the character lattice X∗(GLn) ∼= Z2, where (n,m)

corresponds to the element
(
a 0
0 b

)
7→ anbm. The cocharacter lattice X∗(GLn) ∼= Z2, where (n,m) corresponds

to the element a 7→
(
an 0
0 am

)
. Note that these are different from the root and coroot lattices of GLn(C): the

(co)character lattice properly contains the (co)root lattice.

2 Beginning lattices in gln

Recall that gln(K) ∼= Matn×n(K) as vector spaces, and the Jacobi bracket is given by [X,Y ] := XY − Y X. Now we
will make use of the topology of K. The discrete valuation will give us enough structure to define filtration lattices,
which will allow us to define filtration subgroups. Our goal will eventually be to define the Moy-Prasad filtration,
but to get a feel for filtration lattices, we will first define two standard lattices in gln(K), following [DeB, § 2.2] and
[DeB04, § 2.3].

Definition 34. A lattice in a Lie algebra g is a compact open submodule of g.

Using the exp↔ d/dt dictionary to move from g↔ G, we see that filtrations of g give rise to filtrations of G by
compact open subgroups.

2.1 Congruence filtration lattices

The first system of lattices are the congruence filtration lattices, defined for nonnegative integers i ≥ 0 by

ki := Matn×n($iR).

Example 35. Let n = 3 and K = Qp, so that R = Zp and ℘ = pZp. Then the congruence filtration lattices of
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gl3(Qp) are given by

k0 =

R R R
R R R
R R R

 ⊃ k1 =

℘ ℘ ℘
℘ ℘ ℘
℘ ℘ ℘

 ⊃ k2 =

℘2 ℘2 ℘2

℘2 ℘2 ℘2

℘2 ℘2 ℘2

 ⊃ k3 =

℘3 ℘3 ℘3

℘3 ℘3 ℘3

℘3 ℘3 ℘3

 . . .

Note that k0/k1 ∼= gln(Fq).
Using the exp↔ d/dt dictionary to move between gln(K) and GLn(K), we consider the corresponding subgroups

in GLn(K). For i ≥ 0, define the standard filtration subgroups by

Ki := 〈exp tX | t ∈ R,X ∈ ki〉 =

k×0 i = 0,

1 + ki i > 0.

Note that this indeed produces a filtration

K0 . K1 . K2 . K3 . · · ·

such that each Ki+1 is normal in Ki; furthermore, the Ki are indeed compact open subgroups. In fact, K0 is the
maximal compact open subgroup of GLn(Qp) up to conjugation.

2.2 Standard Iwahori filtration

The second system of lattices are the standard Iwahori filtration lattices, defined for rational numbers m/n for
nonnegative integers m ≥ 0 by

bm/n := {X ∈ Matn×n(R) | Xij ∈ $d
m+i−j
n eR}.

Example 36. Let n = 3 and K = Qp, so that R = Zp and ℘ = pZp. Then the standard Iwahori filtration lattices
of gl3(Qp) are given by

b0 =

R R R
℘ R R
℘ ℘ R

 ⊃ b1/3 =

℘ R R
℘ ℘ R
℘ ℘ ℘

 ⊃ b2/3 =

 ℘ ℘ R
℘ ℘ ℘
℘2 ℘ ℘

 ⊃ b1 = $b0 =

 ℘ ℘ ℘
℘2 ℘ ℘
℘2 ℘2 ℘

 . . .

Once again, we use the exp ↔ d/dt dictionary to obtain a filtration of GLn(Qp) by compact open subgroups
Bm/n, defined by

Bm/n := 〈exp tX | t ∈ R,X ∈ bm/n〉 =

b×0 m = 0,

1 + bm/n m > 0.
As in the case of the standard filtration subgroups, we have that the Bt form a filtration of compact open subgroups
B0 . B1/n . B2/n . B3/n . B4/n . · · · where each B(i+1)/n is normal in Bi/n.

3 Bruhat-Tits apartment

Now, let us fix a complex semisimple Lie group G̃ with Lie algebra g̃. Following §1.3, we let G be the corresponding
Chevalley group over K, and g its Lie algebra over K. We fix a Chevalley basis {Hγ , Xγ , X−γ | γ ∈ Φ+} and ∆ a
base. Recall that the coroot lattice is Z{Φ∨(G)}. We now define the apartment of G.

9
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Definition 37. The apartment of G, denoted by A(G) (or shorthand by A), is defined to be

A := X∗(G)⊗ R/(X∗(Z(G))⊗ R),

where X∗(G) is the cocharacter lattice.

Since the coroot lattice lies inside the cocharacter lattice, after tensor with R, they may be canonically identified.
Therefore we have an equivalent definition instead, using the coroot lattice:

Remark 38. The apartment of G is canonically identified with

A ∼= ZΦ∨ ⊗ R.

Example 39. When G = GLn, the roots are given by αij := ei − ej for i 6= j, where ei is the linear functional on t

sending diag(t1, . . . , tn) 7→ ti. The coroots are given by λij := ei−ej for i 6= j, where ei(t) = diag(0, 0, . . . , 0, t, 0, . . . , 0)
(with a t at the ith index and zero everywhere else). Therefore

A(GLn) ∼=
n−1⊕
i=1

R{ei − ej} ∼=
n⊕
i=1

Rei/

(
R

n∑
i=1

ei

)
.

Alternatively, we can do this via character and cocharacter lattices as well. The characters of GLn are precisely αi for
i = 1, 2, . . . , n, which act on T (the diagonal matrices in GLn) by picking out the ith element on the diagonal. The
cocharacters of GLn are λi for i = 1, 2, . . . , n, which act on K by sending t 7→ diag(1, . . . , 1, t, 1, . . . , 1). Since Z(GLn)
consists of the multiples of the identity matrix, it follows that X∗(Z(G)) ∼= Zλ ⊂

⊕n
i=1 Zλi where λ = λ1 + · · ·+ λn.

Therefore

A(GLn) ∼=
n⊕
i=1

Rλi/

(
R

n∑
i=1

λi

)
.

It is easy to see that these are equivalent.

The apartment of G has a natural action by Φ, since Φ acts naturally on Φ∨ (note that Φ∨ ⊂ X∗(G), so this still
makes sense in the first construction). Now define

Ψ := {α+ n | α ∈ Φ, n ∈ Z}

such that
(α+ n)

(∑
λi ⊗ ri

)
= n+

∑
ri〈λi, α〉,

hence each element of Ψ determines a function A → R.
For each ψ ∈ Ψ, define hyperplanes

Hψ := {x ∈ A | ψ(x) = 0}.
These hyperplanes provide a simplicial decomposition of A, as illustrated in the next two examples taken from
[DeB04].

Example 40. Let G = GL2. The cocharacters are λ1 and λ2, which act by λ1(s)λ2(t) =
(
s 0
0 t

)
. The center is

generated by λ1(s)λ2(s), hence X∗(Z(G)) ∼= Z(λ1 + λ2). Thus we have that A ∼= Rλ1 ⊕ Rλ2/(λ1 + λ2), hence A is
one-dimensional. Fixing x0 as the basepoint, we have the illustration of A(GL2(K)) in Figure 1.

Example 41. Let G = GL3. The cocharacters are λ1, λ2, and λ3, which act by λ1(r)λ2(s)λ3(t) =

r 0 0
0 s 0
0 0 t

.

The center is generated by λ1(s)λ2(s)λ3(s), hence X∗(Z(G)) ∼= Z(λ1 + λ2 + λ3). Thus we have that A ∼=

10



Merrick Cai Moy-Prasad filtrations

Figure 1: Apartment for GL2(K). Figure taken from [DeB04].

Rλ1 ⊕ Rλ2 ⊕ Rλ3/(λ1 + λ2 + λ3), hence A is two-dimensional. Fixing x0 as the basepoint, we have the illustration
of A(GL3(K)) in Figure 2.

Figure 2: Apartment for GL3(K). Figure taken from [DeB04].

4 Moy-Prasad filtrations

First, we define a filtration of the split torus T . Recall that a split torus is isomorphic to a product of Gm, and
hence the K-points are isomorphic to a product of copies of K×. Therefore, we will use the coordinates (t1, . . . , tn)
to denote elements of T .
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Definition 42. For all nonnegative integers i, let ti := t(℘i); the corresponding subgroup in T is therefore
Ti := T (1 + ℘i), or more explicitly, {(t1, . . . , tn) | tj ∈ 1 +$iR for all j}.

Notice that this indeed gives a filtration
t0 ⊃ t1 ⊃ t2 ⊃ . . .

in much the same way as the congruence filtration lattices; the same analogy applies to the Ti. However, note that
the apartment A(G) is a real vector space. We therefore extend the definition to all r ∈ R≥0 as follows.

Definition 43. For any real number r ≥ 0, define tr := tdre. Similarly, we define Tr := Tdre.

Example 44. When G = GL3, we have the following filtrations:

t0 =

R R
R

 ⊃ t1 =

℘ ℘
℘

 ⊃ t2 =

℘2

℘2

℘2

 ⊃ t3 =

℘3

℘3

℘3

 ⊃ · · ·
with the corresponding subgroups given by

T0 =

R× R×

R×

 ⊃ T1 =

1 + ℘
1 + ℘

1 + ℘

 ⊃ T2 =

1 + ℘2

1 + ℘2

1 + ℘2

 ⊃ · · ·
Now consider that the Lie algebra g decomposes into a direct sum (as t-representations) z⊕ t⊕

⊕
α∈Φ gα. Each

gα is one dimensional, and can be identified with ga(K), the Lie algebra of Ga, which is in turn canonically identified
with K. Therefore we have a natural system of filtrations of gα indexed by the integers, namely ℘nXα (with Xα the
element of the Chevalley basis corresponding to α).

Definition 45. For any ψ ∈ Ψ, let ψ = α+ n and define gψ as the R-module {tXα | t ∈ ℘n}.

Putting these together, we can define the Moy-Prasad filtrations, following [DeB04, §3.4].

Definition 46 (Moy-Prasad filtration). For any x ∈ A and real number r ≥ 0, define

gx,r := tr ⊕
∑

ψ∈Ψ|ψ(x)≥r

gψ = tr ⊕
∑
α∈Φ

∑
m∈Z|α(x)+m≥r

gα+m,

gx,r+ := tr ⊕
∑

ψ∈Ψ|ψ(x)>r

gψ = tr ⊕
∑
α∈Φ

∑
m∈Z|α(x)+m>r

gα+m.

Immediately, we find the analogous subgroups of G:

Definition 47 (Moy-Prasad filtration of subgroups). For any x ∈ A and real number r ≥ 0, define

Gx,r := 〈Tr, {exp(tXα) | α ∈ Φ, t ∈ ℘−bα(x)−rc}〉,

Gx,r+ := 〈Tbrc+1, {exp(tXα) | α ∈ Φ, t ∈ ℘1−bα(x)−rc}〉.

It is not immediate how the Gx,r and Gx,r+ form a filtration, but the following results taken from [Rab03,
Remark 5.3] give some insight.

Proposition 48. [Rab03]

• For r > s, we have Gx,r ⊂ Gx,s.
• For all g ∈ G(K), we have Ggx,r = gGx,rg

−1 and Ggx,r+ = gGx,r+g−1.

12
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• We have Gx,r+ / Gx,r, and Gx,r/Gx,r+ is always finite. If r > 0, the quotient is abelian as well.
• For any x and r, there exists some ε ≥ 0 such that Gx,r+ = Gx,r+ε.

Example 49 (Moy-Prasad filtrations for GL2(K)). Recall the apartment for GL2(K) from Example 40. Let us

consider first the Gx,r for r = 0, corresponding to x = x0 + tλ1 for t ∈ R. Since r = 0, we have Tr =
(
∗ 0
0 ∗

)
, the

diagonal matrices in GL2(K). The two roots are α1 and α2, corresponding to e1 − e2 and e2 − e1, respectively. We
find a Chevalley basis given by

Xα1 =
(

0 1
0 0

)
,

Hα1 =
(

1 0
0 −1

)
,

Xα2 =
(

0 0
1 0

)
,

Z =
(

1 0
0 1

)
.

On the other hand, the cocharacters are λ1 and λ2, as described in Example 40. Since 〈λi, αj〉 = (−1)i+j , we have
that α1(x) = t and α2(x) = −t.

Suppose t = 0. In accordance to the
(
R R
R R

)
sublattice of gl2(K) lying directly over x0 in the diagram, we have

Gx0,0 = 〈T (R), {exp(sXα1), exp(sXα2) | s ∈ R}〉,

=
〈{(

s 0
0 r

)
,

(
1 s
0 1

)
,

(
1 0
0 r

)
| s, r ∈ R

}〉
,

= GL2(R).

Suppose t = 1. In accordance to the
(
R ℘−1

℘ R

)
sublattice of gl2(K) lying directly over x0 + λ1 in the diagram,

we have

Gx0+λ1,0 = 〈T (R), {exp(sXα1) | s ∈ ℘−1}, {exp(sXα2) | s ∈ ℘}〉,

=
〈{(

s 0
0 r

)
| s, r ∈ R

}
,

{(
1 s
0 1

)
| s ∈ ℘−1

}
,

{(
1 0
0 r

)
| r ∈ ℘

}〉
,

=
(
R ℘−1

℘ R

)
∩GL2(K).

Let us now calculate Gx,r for x ∈ {x0, x0 + λ1} and r = 1. We will see that these match the subgroups

corresponding to the sublattices
(
℘ ℘
℘ ℘

)
and

(
℘ R
℘2 ℘

)
as in the diagram. We find that Gx0,1 corresponds to the

corresponding subgroup in GL2(K) of
(
℘ ℘
℘ ℘

)
:

Gx0,1 = 〈T (℘), {exp(sXα1), exp(sXα2) | s ∈ ℘}〉,

=
〈{(

1 + s 0
0 1 + r

)
,

(
1 s
0 1

)
,

(
1 0
0 r

)
| s, r ∈ ℘

}〉
,
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=
(

1 0
0 1

)
+
(
℘ ℘
℘ ℘

)
.

Similarly, we find that Gx0+λ1,1 corresponds to the corresponding subgroup in GL2(K) of
(
℘ R
℘2 ℘

)
:

Gx0+λ1,1 = 〈T (℘), {exp(sXα1) | s ∈ R}, {exp(sXα2) | s ∈ ℘2}〉,

=
〈{(

1 + s 0
0 1 + r

)
| s, r ∈ ℘

}
,

{(
1 s
0 1

)
| s ∈ R

}
,

{(
1 0
0 r

)
| r ∈ ℘2

}〉
,

=
(

1 + ℘ R
℘2 1 + ℘

)
∩GL2(K).

More Moy-Prasad filtration lattices in gl2(K) can be seen in Figure 3.

Figure 3: Diagram of Moy-Prasad filtrations for gl2(K), taken from [DeB04].
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